UNCLASSIFIED

AD NUMBER

AD489666

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Aug 1966.
Other requests shall be referred to Rome
Air Development Center, Griffiss AFB, NY.

AUTHORITY

RADC USAF 1ltr, 17 Sep 1971

THIS PAGE IS UNCLASSIFIED

RADC TQ-66-474 Volume |
B Fmol Report o

P"'LMBIL!TY CE'*%TRAL AUTOMAT!C DATA PROCFSS!NG UESYSTEM -

Da..ugn Specsf:cohon Repor?

‘Au‘erkbo’ch Corpora?ion

TECHNICAL REPORT NO. RADC-TR- 66 474
August 1966

This document is subject to special
export controls and esc:: transmittal
to foreign govemments or foreign
nationals wiay be made only with
prior approval of RADC (EMLI),
GAFRB, N.Y. 13440,

Best Available Copy

When US Government drawings, specifications, or other data ae used for any purpose other
than a dcfinitely relared government procurement operation, the govemment thereby incurs
no responsibility nor any obligation whatsuever; and the fact that the government may have
‘ormulaced, furnished. or in any way supplied the said drawings. specifications. or other
data is not to be regarded, by implication or otherwise, as in any maaner licensing the
holder or any other :rson or corporation, ot conveying any rights or permission ‘o manu-
facturer, use, or sell any patented invention that may in any way be related thereto.

Do asc teturm thia copy. Rethin ordeswop. i i

S R IR R P ST SR

! | RELIABILITY CENTRAL AUTOMATIC DATA PROCESSING SUBSYSTEM

Design Specification Repor?

Auerbach Corporation

This document i5 subject to special
export controls and each transmittal
1o foreign gos ernments or foreign
naticnals may be made only with

pr.ur approval of RADC (EMLD), %
GAFB, N.Y. 13440,

MAINL INE FHGLOTFRING WMAPLE SHAN! | N.J.
LYRAFEL Teg

FOREWCRD

This three-volume final technical report was prevared by the
Auvervach Corporation, Philadelphia 3, Pannsylvania under Contract AF
30(602)-3820, Project 5519. It i{s identified by the contractor as !

{
{

1280-TK. The authors were Dr. J. Sable, W. Crowley, M. .’csenthal, S.

Forst, and P, Harper. The Rome Air Development Center Project Engineer
[was Casper DeFiore, EMIID.

This technical report contains information embargoed from release

to the Clearinghouse for Federal Scientific and Technical Information, _‘
Department of Commerce, by AFR 400-10.

This technical report has been reviewed and is approved.

Approved: .

FRANK J. T@MAINI
Chief, Information Procegsing Cranch

.‘ 1C .
| Approved: 5?2‘0/‘? 2{ %/4) ’
JAMES J

izf/ . DIMEL, Colonel, USAF
Thief, Intel & Info Processing Division *

FOR THE cowmoem"),m o)ki 4 -
IRVING J) GABELMA! D

J
Chief, A‘Joncad Studies Group

o

L g A

ABSTRACT

This ie Volume I of the three-voiwne {inal report produced for the Rome Air
Dlveicpmeny center (RALC) under Coatrns! ARSGC21-3320. Volwues T azd Ul are the
Design Specification Report for the Automatic Data Processing Subsystem (ADPS) of
Reliability Central, known as Data Manager-1 (DM-1). Volume III is & survey of major,

computer-criented on-line information and fact retrieval systems.

The system design specification will be used for the implementation of the
computer programs required to vperate the RADC Reliability Central, The work
reported in these volumes is an :xtension and detailing of the functional system design
developed by AUERBACH Corp« -ation under Contract AF30(602)-3433 and reported in
RADC-TR-65-189, Design of Reliability Central Data Management Subsystem, July,
1965. The DM-1 design provides for the incorporation of the reliability data collected
by the Olinois Institute of Technology Research Institute (ITRI) under Contract
AF30(602)-3621 with AUERBACH Corporation as subcontractor,

Thir volume defines the DM-1 system, descrihes its use, specifies a.
major system components and discusses the management of the data pool and job
library and the programming system services. Volume !I contains a detailed descrip-
tion of the data pool and directorie: and the technical documentation and flowcharts
for the system programs and jobs.

141

'PREYIOUS PAGE YAS BLUK, THEREFORE WS NOY FID®D |

TABLE OF CONTENTS

Paragrar Titox Pace

SECTIO! I, INTRODUCTION

1.1 RELIABILITY CENTRAL DATA MANAGER-1 (DM-1), 1-1
1.2 DESIGN SPECIFICATION REPORT v evvr evvnnoen 1-3

SECTION II. DESIGN OBJECTIVES

2.1 RELIABILITY CENTRAL REQUIREMENTS , 2-1
2.2 CONVENIENCE............. st e eses s ncesr o 2-1
2,3 FUNCTIONALBANGEttt sevnenacasanons 2-2
2.4 ADAPTABILITYt eivivrenanoneoanasonanns 2-4

SECTION III, SYSTEM CHARACTIRISTICS

'1 USER’SVIEW..Q.DO...oocoo-bl..@n‘llooc..co.co 3-
0101 QUCI‘Y operatmm. L I R I R I I I I I I O * e 8 8 0 0 0 v s 3'
01.2 Interpteme Pl‘OCGBSng « e 0 30 0 8 s . * ¢ 8 & 5 0 0 0 5 0 9 2 s a0 3"
.1.3 Sequence Executionccev0ecvvveoensncsocsscens 3-
-1-4 RﬁcurrentJObB....................'.. A LI . 3"
2

DATA ADMINISTRATOR'S VIEW , i it v ennnnesns
PROGRAMMER'S VIEW ,ttt vevonnnoccnnns

Program Description
DataStorageamiRetrievalServicea..,................

mTEGmTBDVIEW lllll ® o ® # 5 & 6 A ¢ * & 9 5 2 P DS I 8

Data Base Development.cv.0...
Job Library Developmenticonveeeesases.
Operstional Use.

(]
]

t

!
Lol B> I T T B~ NS B 5 I 2, B~ N V]

<O

[N
1

.
(-3
¥

e e o W W

1{

I W W (:J Wt W

SECTION 1V, DATA POOL FEATURES

4.1 DATA STRUCTURES ce v s es i b e s esae e

¢ ‘.1'1 Iwmwf.'.‘..."I...A’..."."l"..."'..’. ‘-2
‘nluz ltemst‘nicmre.....'........\.‘.\-.........a....... 4‘4

" ‘.2 PRIMARYDIRECTORIEB.aao-.sa.o-vc--oa'.-ocao-- 4"'5

‘- 2.1 l‘em u.t LI A S A B S 2 SRR IR I T Y I B I N I DR R R R TR R T N N N T I) » "’8
‘.2’2 Tem Lwt:e-labtcﬁau P I A I I B IS S T I I S A L A R “‘8
4,2.3 Term Encoding Table.ty 4-8

— . TR, T E
A e p——— »

TABLE OF CONTENTS (ConTn.)

ParaGrs =n Titee FPace

DATAREPRESENTATION.OOOOIlll..-l.'-.ll..ll'lll 4‘11

Data Stream ¢ 6 8 A 0 B ¥ 0 & 4 4 8 0 b ¢ 8 0 8 9 0 8 & s 0 3 0 s 8 0 4 0
&mentation. 4w 6 8 0 & D B 5 4 % 9 D B 8 O Pe 8B 8L e e ey o
Segnlent Index- e o ¢ 0 o o @ 2 0 0 & 4 % 2 8 0 4 " s 2 0V B s e o * 0 2 e 4"15

SAMPLERETRIEVAL..r.i‘..il..l..b.. ----- LR B B IR 4‘15

.«
e
W DO =

Name Translationcco0 i v eaeece
Search Strateyy . . oo ee o« veae e .

Daia Segment Retrieval, et et e s s e et e 4-17
Datu Stream Interpretation

INDEXING .. v es v tonsvosennecsonacesosacsasssas 4-20
LINKAGE......... e revs et s e s eacsncaan s 4-22
DATAINTEGRITYt itevveeooaccacsanccssans 4-26
Security Safeguard......

ﬁ\lﬂ*‘l = O babh B goww w
o WO IN -

.
-

o
P
[\
[«

- . 1 L] LN “« 2 0 s . L

ol 2 vwdity Safeguard « 8 & 6 0 8 0 2 9 0 8 s s s et s 0 s e * 5 e 2 00 4-27
.7.3 Item Lockout (Busybif)o e e s st e 4-27
. 4 General Pmc“ure * 2 6 0 0 0 0 4« 2 a0 6 00 0 . L] . ¢ s 9 4‘28

C

THEDAT!AI’()OL-. ----- LA R B R Y I Y I N B I R I I S o . 4"28

S[ructureDeVGlOpment.... -------- L A R B A A A Y I 4"30
Data Manipulation . .,........ 4-31

CONDITIONAL RETRIEVAL, ... oo vh e ae s 4-32
THEDIAMWOGUE v i i een e 4-33 .
4.10.1 Uses of the Dialogue Procedure N 4-34
4.11 RESTRUCTURINGITEMSo v v S e o e 4-35

)

.
@w B
.

et i el st i i i i
o =

P-N
Pt
<

SECTION V. OPERATIONAL FEATURES

o
1]
[

-

SYSTEM LANGUAGE SPECIFICATION e e

The Metalanguage00 vevio . vascacnsonoanoesss
Extcrnal Definitscn Languagesccinv v
Useof INSCANwithan Item Imageot v v vons oy
Data Language.« o v ot v o s cess ceueecossvsesonccos
The Job Raquest Language.t covovrvesocnoannss

JOB-PARAMETERBINDING0ttt socones

Programs and Jobs et e s s e s a0 cns s a0 e
Binding Speciffcation

.
-

.
ot b ek b o
o LD N

-
L]

]

+
(5 =]

)
-

®
«

.
[

$

?\Ul (2] U‘l?'(ﬂﬂ'-lcl (34
Ll

[P+ B 4] cvc!nt.-vmcn
INS poit et pms pew =] DO

[I
.
DO s

vi

TABLE OF CONTENTS (Contp.)

B e S S S R . I I I

Y

-

. .

.

S N A LWL O DD bt s s

6.1
6.2
6.3
6.4
6.5

W AT JFUSTRTN

Paracraru -

O B M

LD DS e

Titie

RELATIONSHIP TO THE OPERATING SYSTEM,.
REQUEST PROCESSOR.
Request Translation. ...

Job EXCLENSION . . o v .+« v v v e a e
The Request Record
JOB MANAGER.

SERVICE PACKAGE. e s eaa e e

SECTION VI. DATA—POOL MANAGEMENT

DATA INDEPENDENCE et e s ettt e
DIRECTORY MANIPULATION e e e eaes
DATA MANIPULATION.

PREPARATION FORUSERS e s ees st ae s
USAGE STATISTICS.t eveevenas

SECTION VII. PROGRAM PARAMETERS AND THE JOB

LIBRARY
PARAMETER CATEGORIES et
Generalized Parameters. e e e
Specific Parameters. ,....... P et e e e e e b e e
Parameter-Binding Examples
PROGRAM ENTRY.
JOB DESCRIPTION (.. . i i itenann o e e
Componeut loput Parameter Binding Gt et e
Component Ouiput Parameter Binding
Parameter-Binding Chofces. e s
THE JOB DESCRIPTION LIBRARY e e
JOB AND PROGRAM DELETION e
LIBRARY DISPLAY s s s et e e naaannn .

vi{

5-24

5-24
5-26
5-27

6-2
6-2
6-4
6-5

P BNty s - g P A S e e

TABLE OF CONTENTS (ConTn.)

ParacrasH TiTLe Pace

SECTION VIII. PROGRAMMING SYSTEM SER" ICES

8.1 DATA ACCESS SERVICES. e e e e 8-2

8.1.1 Open-For-Input. 0 ittt it ittt e ettt et aeee v §-2

8. 1.2 Read ----------------- ¢ ¢ 6 2 4 0 2 0 2 0 2 b 0 s s s ae s e s e s s 8'4

9.0 ceek et e e c e s e e c e e b e et N B-5

8.1.4 Cloge-For-Input00t i it i eennnennas 3-5

8.1.5 Retrieve-Item oo i i ittt ittt it et it et aas s venes 8-6

8.2 WRITING SERVICES. et e s e e e e 8-6

§.2.1 Open-For-Writing v o o vt i e et i e i e i v e e 8-7 :
§.2.2 Write. inieaen e e e 8-7 ;
8.2.3 Close-For-Writing. e e et e e e .o 8-8 ;
8.2.4 Insert-Data. s ceeeas B P I .. B-R j
8.3 UPDATING SERVICES ., ., . .. e e e 3-8
8.3.1 Open-For-Updating e e e 8-9
8.3.2 Read, Seek............. e e e 8-9 ;
8.3.3 Insert ¢ ittt ittt e hee s 8-9 !
8.3.4 Replace e et e e e e e s e e s e et 8-10 '
§.3.5 Delete e e e e e e 8-10

8.3.6 Seek-With-Copy. oo e e e e 8-10

8.3.7 Close-For-Update, et 8-10 .
8.3.8 Replace-Item¢c. e e e e e e e e 8-11

8.3.9 Delete-Item i i e e e e e e e e e 5-11

viit

Figure Tirie g
3-1 DM-1 System Overview,
3-2 System Operation, Block Diagram . .. K
4.\ Tree-Structure Representations . . b
4-2 Purchasing Item Structure.
4-3 Sample Structure.,
4-4 DataMaze 4
4-5 Directories for the Purchasing item 4 -
4-6 Tree and Network Diagrams for the Purciisgy e
4-7 Purcliasing Item with Links
4-8 The Data Pool. . . oo oo vuvvn.. .. i, i
5-1 Syuntactic Chart N L
Bl
5-2 Structure Diagrams with Ite.n Imsages . . . e-‘;{j
5-3 Syntactic Chart for Item Image. ¥ ,ﬁ
o
5-4 EDL Syntactic Chart. i o i
5-5 Job-Run Request S'ntactic Chart _ . . ':1
5-6 Jobs as Black Boxes. b }
5-7 Request Translation. ‘ i ﬁ*
5-8 Transitions Controlled by the Job Manager. ak
7-1 Categories of Input-Output Parameters ““
7-2 Example of Parameter Binding. i
7-3 Job Construction Procedure. ; ’,.
7-4 Intermediate Form of the Job FAILURFE ANA : (- A'ﬂ
8-1 Interfaces of the I)M-1 Services. v
3.
8-2 Sample Buffer Description List = ‘}
x5
15
};
)
*:}i
Y
&
b
e 5|
K, ¢
- |
gl,‘"l
iyt
. ' L
@
- IR
Y
§.
)';‘h’_“
e m
Ry
1A
i)

LIST OF ILLUSTRA 7; Oty

LIST OF TABLES

TasLE

4-1
4-2
4-3
5-1
8-1

Tiree
DEFINITION FOR THE PURCHASING ITEM, e e a e
TERM LISTANDITEM LISTottt e et vt oneesos . e
TERM ENCODING TABLE ... v et s tervtenaosnnna .
STRUCTURE OF THEREQUESTFILE 000 .o

STRUCTURE DEFINITION FOR PURCHASING ORDERS FILE . . .

SECTION I. INTRODUCTION

11 RELIABILITY CENT” AL DATA MANAGER-1 (DM-1)

’,

DM-1, a computer-baa(‘ied sc ‘tware system, is designed for the Rome Air De-
velopment Center (RADC) to operate as the Automatic Data Processing Subsystem
(ADPS) of Reliability Central. The DM-1 system will ope 1te in a ime-shared mode
on the Reiiabﬂ{ty Central data processing facility in conjunction with that facility's
operating system, The mission of Reliability Central, as a central sctiv;ltysfor the
acquisition, analysis, dissemination, and use of reliability information, presents an
imposing requirement for data processing resources. DM-1 satiafies this requ! ament
by providing a set of data processing elements which cohere in an integrated system,
The major elementa of the DM-1 syatuom are:

(1) A rationale for the structuring of & large, dynamic data base,
The reliability dats gathered by Reliability Central can be in-
tegrated into the DM-1 dati pool, under structural specifications

which retain the individuslity of the diverse data items while
manifesting the relationships among the items.

(2) A repertoire of generslized system operstions that provide for the
mansgemant of the DM-1 data pool. The reliability analysts can
moedify the data and its descriptive parameters to acoommodate
new dats elaments, or new relationships, or to adjust to changing

requirements and operational experience.

TR YR A

@)

(4)

()

16)

(7)

(8)

A mechanism for retrieving selected data to meet specified
information needs. The Reliability Central staff can

access the precise data items needed to meet on-demand
requirements for information, DM-1 can display the results
of an inquiry issued at a console, develop a data item with
specified characteristics for further processing (reliability
analyses), or deliver the specified data to a program operating
with the system.

A procedure which assists an inquirer in defining his informa-
tion needs. A Reliability Central user can perform a dialogue
with the system. He chooses the pertinent attributes to
describe the item about which he needs information from
displays presented by the system. Each display identifies

the classes of information available in the DM-1 data vool,
The displays proceed from generic to specific identifiers

in response to the inquirer's seiections. After the attributes
are defined, the user provides limiting conditions which define
the properties of the individual units of information he needs,
by selecting characteristics to define t..e pertinent data from
another series of displays.

A library of application-oriented programs and jobs. The
Reliability Central can add new programs to the DM-1
repertoire to perform special-purpose reliability processes
on the data. New units of work (jobs) may be defined as
combinations of existing system and application programs to
meet recurring needa for data processing.

A mechanism for selecting data processing routines from
the library and applying them to specified data elements

in the data pool. The reliability analyst can issue commands
from a consple for the execution of any job in the DM-1
library. He can specify the daia items in the data pool to be
operated on by the job.

A method of maintaining data and programs as independent,
mutually complementary resources. The reliability data

base need not be oriented to any specific set of programs.

The reliability application programs need not be limited

to operation on specific items of data. DM-1 maintains
structural information about the data in its directories and

the data requirements of the programs in its library. If

the requirements of the program fail to match the characteris-
tics of the data, the system can transfor 1 the data to the
format required by the program.

A set of system routines to control the execution of DM-1

jobs and to service the data needs of programs during their
operation.

1-2

A 7 e s s

(9) A mechanism to provide for data integrity and security.
Reliability Central uscrs are protected from unauthorized
access to their data,

1.2 DESIGN SPECIFICATION REPORT

This report specifies the Automatic Data Processing Subsystem (ADPS) of
Reliability Central. The general-purpo. : nature o the data processing requirements
of Reliability Central and the anticipated need for aujustments in its requirements
predicate a need for a general-purpose solution. This report describes the Data
Manager-1 (DM-1) as the initial basis for that solutton.

The design specification for DM-1 is presented in two volumes. This first
volume describes the system as a whole. It definer the objectives of the design and the

- characteristics of the system, It describes the system's features in terms of its two

major aspects - as the manager of the Reliability Central data base and as an operational
tool for the accompiishment of data processing objectives. This vclume also presents
the DM-1 components which support the Reliability Central staff in managing the data
i:ool and the job library and which support the programmers in accessing and storing
data in the system data pool.

Volume II contains the technical documentation on the system's components.
It describes the detailed structure of the system data pool and directories, which
provide for efficient handling of 1arge Reliability Central files. The second volume also
contains flowcharts and descriptions for the DM-1 sysiem routines and jobs,
specificaliy:

(1) The routines of the Service Package which provide the Inter-
face between operating programs and the data pool,

{2) The DM-1 Supervisor, including the Request Processor which
responds to user requests from = console and the Job Manager
which manages the flow of control among programs.

{3) The system jobs which provide for the manajgement of the job
library, including the Program Entry and Job Description
jobs and joba for deleting and displaying job descriptions.

(4) The system jobs which provide for maintenance of the data
pool, including the jobs for deacribing and deleting data
structures and the jobs for adding, deleting, modifying, and
updating data in the data pool.

(5) The system utility jobs, including Query and Conditional :
Search for retrieving relevant data from the data pool,
conditional Reformat for subselting and restructuring data
items and Display for transforming internal data items to
an external form for presentation to users.

TR

b -

SECTION Il. DESIGN OBJECTIVES

2.1 RELIABILITY CEN'i:;:AL REQUIREMENTS

The specification of the ADPS requirements is derived from the mission
requirements of Reliability Central. Thus, the ADPS must have the ability cot only
to gather daiz and retrieve i selectively but also to make this data availahle to power-
ful analytic tosls in the form of computer programs. The Rellability Central ADPS
caunot be a system for the storage and retrieval of rigidly formatted documents. It

must be capable of answering information needs by supplving facts which may depend
on complex interrclationships within the data; and it must be prepared to adapt to
changing requirements as Reliability Central evolves. The design objectives discussed
in the following paragraphs are derived from the requirements cf Reliability Central.

2.2 CONVENIENCE
DM-1 must be a service tool for a variety of Reliability Central users. The

ugers will range from those who wish to use the aystem without learning anything about
it to thoce who wish to be experts in the manipulation of its inner workings. ~nse-
quently, the system will be driven by a console-based user, with a spectrum of
tools at his command.

ommanr e spimte s

The user may obtain system guidance in specifying his requirements
through a multistage dialogue, in which he responds to displays generated by the
system. He may issue requests to the system in a user-oriented language which
shields him from the complexities of the system while giving him the power to perform
useful work.

The more advanced user may specify his requirements directly to the sys-
tem., He can issue complex requests that involve conditional selections and restruc-
turing of data in the course of job execution. He may modify the degree of system
centrol over specified data to enhance its performance in certain operations., He can
define new operations for entry into the DM-1 library. Even for the expert, the inter-
face with the system must be as simple and convenient as possible,

2.3 FUNCTIONAL RANGE

DM-1 will contain the full set of data processing capabilities associated with
the data base of Reliability Central.

The variety and complexity of reliability data demand the ability to specify
complex structures showing the interrelationships among data items. The dynamic
chai. ter of the data must be accommodated by system tools which permit changes
in data structures and data content. DM-1 supplies a series of system jobs that per-
mit the Reliability Central staff to manage the data pool without the use of special
programming.

The Reliability Central requirement for data reduction and analysis must
be met by a library of data processing and analytic programs capable of operating on
the data under DM-1 control. General-purpose programs capable of operating on any
reasonable data in the reliability data base are needed. They should not be tied to
narrow applications with specific data, The Reliability Central staff must be able to
add new programs and jobs to the DM-1 librery to meet data processing requirements
as they arise. The core !{brary of data processing and analytic programs supplied by
DM-1 must be expandable by the addition of programs developed by Reliability Central.

B A . ST

e

.,@@
F i
.

DM-1 system jobs should provide the ability to accept new programs. The Reliability
"entral staff must be able to define jobs in terma of existing system and user pro-
grams and jobs in order to tailor the library to evolving requirements. With this
capability, the jobs which produce the scheduled information products of Reliability
Central can be defined and added to the library.

Reliability information needs will be met by DM-1. A user should be able
to state an information need in a convenient language at a console and have the system
retrieve and display the data which answers the neeu.. DM-1 must supply a system
language which parmits the user to specifv the attributes of the object, event, or pro-
cess of interest and the properties (conditions) which define the individual elements
aboui which he wants information. When his information need is not well defined,
or if he is not familiar with the information available or the rules for specifying his
need, the user can rbtain system guidance by performing a dialogue.

Reliability Central will be faced with more complex irformation require-
ments that involve the selection of data from various parts of the data base, its
analysis oy reduction by programs and jobs, and the presentation of the results.
DM-1 must provide the user witii the ability to define the information to be processed,
the job to process it, and the results to be displayed. When the steps to be taken
depend on the results of aualytic processes, the user may define and execute a step
at a time, display or query its results, and determine the next step.

Reii_ability Ceniral users n.ast have immediate access to the services of
DM-1, The system must be capable of serving competing users simultaneously. It
should be designed to operate in a multiprogrammed environment where it can gervice
many users in parallel, Each user should see the system as dedicated .5 him while he
is using It,

Many data elements in the reliability data pool will contain proprietary
information. DM-1 must protect Reliability Certral users and contributors from
unauthorized access to such data and provide for the protection of the data from mod-
ification by unauthorized users or collisions in usage.

2-3

e ¢ bt s ek

2.4 ADAPTABILITY

Al] systems exist in an environment of change. DM-1 must be able to
adapt to changes and continue to give usetul service to Reliability Central as it evolves.

One element of adaptability relates to the DM-1 software. Its design is
modular so that it can be expanded with minimum cost and effort. Its system components
are genéral-purpose programs so that they may be applied when unforeseen uses arise.
In addition, the system contains a built-in cepability to adapt to changes in data and
processing requirements. The library of jobs and the data pool are managed as inde-
pendent resources. Data structures and data content may be changed by system jobs

as the need arises, without obsoleting the programs which operate on them. New pro- g
grams may be added to the library. New operations (jobs) may be defined in terms

of existing programs and jobs, even when these components were written to process

data in structures that differ from the ones to be operated or by the new operation. With

these tools, the reliability data base and the job library can be adapted (G accommodate

changes in the data base or the processing requirements cf Reliability Central.

The other element of adaptability relates to hardware and the operating
environment. DM-1 has been designed to take as little account of equipment idiosyn-
crasies as possible. Its data pool is stored in a device-independent format on a variety

of random-access devices. The logic of its processes is device- and computer-independent.
and the processes will be coded in a procedure-oriented language wherever possible. The
interfaces hetweea DM-1 and the equipment and the operatin,; system are designed to be

as narrow as possible. For example, all system processcs are performed with logica.

data pool items as their input anc output so that only the service routines, whici deal

directly with the environment, take account of the features of the operating system and
the equipment,

SECTION lll. SYSTEM CHARACTERISTICS

Programs and data are two prime resources of a data procesring center.
DM-1 contains a collection of procielures, executive functions, services. and programs
that views data and programs as independent entities whose properties ~omplement each
other. The same data is useful from many viewpointr, it should be available for use in
different applications and for processing by unrelated programs. The same program is
« valuable ~omponent in many operations; it should be available for use in difierent
applications to operat~ on unrelated data, DM-1 meets these objectives by using a
system directory to separate the structure of the data from the logic of the programs.

When focusing on datat the inf i mation management aspects of DM-1 pre-
dominate. The system provides a rationale for structuring data and a set of tools for
managing and querying a common data pool. The item definition "anguage and associated
maintenance johs provide for naming data items (fields, files, or combinations), defin-
ing their structure, expressing the relationships among them, and changing these par-
~neters to meet the needs of a large, conetantly varying data pool. The data languages
and related maintenance jobs provide for entering data, manipulating it, modifying it,
and changing its structure to meet changing requirements. The quary language and the

3-1

conditional search query, dialog, and display jobs provide for determining the signifi-
cart items, defining the significant data, retrieving it, and displaying it to meet both
predictable and unscheduled needs for ir.formation.

When focusing on programs, the operational aspects of DM-1 predominate.
The system provides program wud job library services, symbolic binding of program
input and output parameters, data storage ind access services, and job execution
control. A program description, which specifies the input and output requirements of
the program, is maintzined for every program in the system. Complex jobs may be
dz2scrwed as sequences of programs and jobs with binding specificatiors to retate the
inputs and outputs of the components. Any program or job may function as . task, job,
or subroutine. As a job, it muy he executed by a command from a user's console. As
a task, it may be used as a component in a job description. As a subroutine, it may be

exccuted by a call from within a program.

Programs and data remain as independent resources to be combined as the
need arises. DM-1 maintains information about the str:icture of the data in the system
directories; it maintains information about the input and output requirements of the
programs in the libraries; it has the ability to transform the existing data to meet the
requirensents of the programs.

Figure 3-1 is 2 simplified overview of the system. It shows the cvuversion
of external dats to the system data poo. through the data collection and conversion jobs
and the developmen: of the job library through the program eatry and job description
jobs. With these data and program resources available, the ucer may request the
execution of an operaiion from the library on a data set from the data pool. The System
Supervisor responds to the user's request, sets system parameters to guide the selec-
tton of data, and oversees the execution of the sequence of tusks requested by the user.
The. tasks store and retrieve data by calls on system service routines which interpret
the requests with guidance from the system direciories. The relevant results of the
operzation are presented io the user by the system output jobs.

3.1 USER'S VIEW

DM-1 is a console-directed syatem. I works in response to user comm.nds
issued in a job-request language from a console. The user treats the job library as a

3-2

. AUREGE

A vl < St s

TRETE = I e 'R TR e T et iy NI T
TR et e~ Sl ST R . SV R
i s AR I S S e e RIS, N % e B, K, W N .
TN e T e DL L o g AT B e, Wt L ~ Ll ol ') .
= ALY R i e T R T N Rl A %=) g 4
AR TR P > e Porty) adtigs -
B P Tt IR T B R AR S I
Al
e Y
.a AT e Sy ‘ L o 3
L MR A $ N . : 3
g “xe > : ;

: : P “, 4 A wioday
. Ty B mhing | 4 pus BI1B(]
: S i m “ UEAY jURAQ]AY
} , { gor E‘Snmm
saunnoy 30 4980
3d1Ad0g o B 1T |
W ARAg uopeas k) '

_ ﬂ 1sanbayy gop
N\ .82?5&:@ - AN T - W)
£1030841 WA HAG AJOSUOD
%a waelg _

gqop wsAg
pue 198()
Jo Sxeaqri

m sqop a

3-3

a018.13AU0D) gqep uon
pue uond3{jon -drrses(1 Gop
BlB(] pue L2119 i
weidoag i

: [N . -Lo ,

.. waﬁwh odE i spae)) mmmq -:M guonydizogagg
oyjslaY I xedeg payounyg)L — qoyp pue

. /] wrexdoag

1a8]}

T
890JN0¢ BB [BUINXT

it

R R

set of unerators at his command. He treats the data pool as the operands to be bounc
tc the operators. The ,.bs may oe lengthy , ~cesses that consist of many tasks to be
executed over lirge files of data or simple functions that consist of a single operat on
on a small unit of data. The user may execuie 2 job by specifying its name and binding
its input and output parameters. He may supply literal values for the parameters at

the console, or he may give the names of the data pool items containing the values.

The jcbs at the user's command fall into several itegories. The input jobs
accept externai data and raap it into prescribed items in the data pool. The processing
jobs operate on items in the data pool to produce or update other items. The retrieval
jobs select items on given criteria. The output jobs display items at e console or
produce nard-copy reports. These are not exclusive categories. Many jobs are pre-

defined sequences ot other jobs that contain ali of the categories.

3.1.1 Retrieval Operatiors

The user may enga,c in a dialogue with the system to deterriine “e names
and structural relation=hips of items in the data pool, to select items of intc .. t, and
tc specify conditicns for selecting the vaiues of those items for display or processing.
The dialogue guides the user to formulate an information retrieval statement ard calls a
retrieval job to create a new item for processing or to produce a report or display of
selected items, based on the values of those iteins which meet a condition of arbitrary
complexity. After . dialogue the user may storc the info.mation retrieval statement
witk 8 name which permits him to call a retrieval job directly the next time the same

need ariscs.

A retrieval iob may be used to answer management questions about the state
of any items in the data pool. A condition of arbitrary complexity may be used to select
the items of interest. The condition and the structure of the data pool permit the user
to focus as narrowiy as possible on the significant data, theveby eliminating manua)

searches through bulky reports.

Another use for retrieval jobs is to develop & data set with special character-
frtiza. An {tem mivke be developed by selecting the items which meet a8 condition and
mapping them inte the structure of the new item. The new item would then be avatlable
te other jobs for analysis or processing.

[99]
:
s

O AT T RN MR AR BT, Ay, e e

Y

3.1.2 Interpretive Processing s

An analyst at a console may apply a steb-by-step procedure in processing
data * - 1neet a nonrecurring requirement. He begins with some initial data items and
a set of op¢~a {ons, capable of answering his needs, in the job library. He applies a
job to sele "ted data iteme and its results are stored in another item. He may then use
a system display job to see the results of the first step. Based on the results, he selects

the next .*ep and the data it is t¢ uperate on. This process is repeated until the desired
results are achieved.

Each step of the process is initiated by a job-run request, which gives the
name of the job aud the values or names of the items which are to be used as the input
and nutput paramei._rs for the job. The outpuls of earlier steps gy be used as inputs
to later steps. The process is feasible only if the jobs can turn around their results
quickly. With a set of such operations in the library, the job-run request is analogous
tc a macroprogramming language which allows a user to code at a console and have his

instructions interpreted and executed as he presents them.,

3.1.3 Sequence Execution

When t{ne'user wishes to execute a sequence of jobs, the system wili acce; *
a full description of the sequence before executing any of the jobs. He specifies each
job in the sequence and binds iis input and output parameters, relating the outputs of
one step to the inputs of later steps. The sequence will be executed as though it were

a gingle job, with no interaction between the system and the user unless the jobs in the
sequance interact with him.

3.1 4 Recurrent Jobs

A job may be created as a sequence of operations and stored in the job library.
Some of the parameters of the job may remain unbound. In this way, useful sequences
may be called and executed by a job-run request. Only the name assigned to the sequence
«nd the binding for any unspecified parameters need be given to trigger execution of the
sequence. A job created in this way 1.ay be used as a component in another job or called
as a subroutine of a program, as may any other job in the library

3-8

3.2 DATA ADMINISTRATOR'S VIEW

The maragement of a large complex data base for common use by a lacge
number of consumers must be centralized. A data administrator is needed to maintain
a balance among competing uses for the data. DM-1 provides a set of tools which support
the data administrator in managing the data base. He analyzes the tradeoffs involved in
competing usage and uses the system tools to maintain an appropriate balance. His
primary concern is the selection of options which yield the best performance.

The J.ia administratior manages the overall structure of the data base. Al- .
though he takes little interest in the internal structure of items which are essentially
private files, he must resolve the structure conflicts that arise from common use of
datz. If an item's structure is oriented toward one application, other applications may
require a structure transformation. If the information is maint2*ned ;2 several forms, -
any updating must be applied several times. Conside. itions like these influence the e
data administrator's decision about data structures.

The efficiency of operating on given data sets m v be enhanced by several
options of DM-1. The data administrator must evaluate the 2 of the options. Fields
which are frequently used as keys in retrieving or seiecting da. © 'nay be indexed in one
of several ways., The indexing creat-s an auxiliary directory table which permits rapid
location of items based on values of the indexed field. Extra storage space is required,
and the cost of modifying the indexed field is higher, but retrieval time is improved
significantly. The data administrator must choose whether to index a. 1 which option
to select. Similariy, a i gical linkage may be estrbiisned between separate structures
in the daia 'se. Here, too, there are advantages and disadvaniages, and the data

administrator is charged with the decision.

Another area oi conflict relates to the integrity and security of data The data
acdm tuistrator assigns ull system users to a user’s gro.,. and assigns each group an access
and modification level which locks them out of certain areas of the data base while permit-
ting them to operate with other areas. Exceotions to the Zeneral rule are permitted. The
data adminisirator may assign spec..c items of a forbidden class to specified users. The
assignments may be made to depend on the values of a specified field.

. .

BT A A s s

ey

,A..;__.,-M.ww.wgmﬁ/

DM-1 helps the data administrator by maintaining usage statistics on key fields
and data retrievals. It supplies the tools which enable him to implement his decisions.
A series of maintenance jobs permits him to define and change structures, index fields
and eliminate the index, restructure large volumes of data, and enter data or modify it
in a number of ways.

3.3 PROGRAMMER'S VIEW

DM-1 maintains a library of programs which are the basic building blocks of
jobs. It controls the execution of programs and manages the sequence of the programs
in a job. Guided by the program description and the data pool directories, .he system
relates the data pool items te the input requirements of theé programs and maps the
output data into other data pool items. The inputs of the individus! programs are
matched to data pool items and to the outputs of other programs, and any conditional
selections or transformations are accomplished automatically according to the speci-
fications of the job description or the job-ruu request. When a program is operating,
it uses the Service Package to retrieve its input data and store its cutput data, These
are some of the operational characteristics of the system,

3.3.1 Program Description

A prog.am cannot be made to be conpleiely independent of the structure of
the data on which it cperates. During the processing steps of the program, the format
of the individual units of data affected by the steps is implicit in the code of the program.
However, this structure dependence exists only with respect to the units of data that
share active memory with the program. The algorithms of the program are independent
of the structure of data external to it, and they work properly if the data is dalivered to
the prograr's input butfer in the expected form. DM-1 manages the delivery of data
to a program's input buffer and performs transformations on the deta, if necersary,
te put it into the form required by the program. To ao this, the system must know the
form of the data as it exists snd the form required by the program. The fornier is given

in the data pool directories. The form required by a program is given in the program
description library.

ARt o S

e e e w4 A A RA e e ed WD WM AN AMRNRE Lo 4 ST LSOOy i - TR Ra 4 SRR vt 43 MBS e - ek e Pl S

A program writter for operation in DM-1 18 written to operate with formal
input and output parameters. The structure of these items is oriented { the require-
ments of the operation performed by the program. These structures might correspond
to actual siructures in the data base, but this is not necessary. In fact, if a program
is to be useful as a component of many jobs, it should be written to operate with the
most convenieat structure, and it should be independent of the precise format cr=ated

by sowue other program. An item may be described as a formal parameter of the
program, even though it is an exact replica of a data base item, to pevmit the piro-
gram to continue to operate without change, even if the structure is chang~? in the
data base.

A p. gram is described to DM-1 by executing the program description job.
The names and the precise struc..re of the formal input and output items are specifie
at the console. This information is translated by the program ww~ciipuon , .5 into aa
entry in the library. Once a program has beer described tc "he system, it automatically
becomes a job in the system's repertoire. It may be called and executed on specified
data from a console, used as a component in another job, or called and executed as 2
subroutine of another program.

3.3.2 Data Storagg and Retrieval Szrvices

A program reads data from the data pool and writes data into it by calling on
routines of the Service Package. The Service Package is analognus to an input-output
control system. It contsius a resident interpreter and & set of service routines. The

routines are reentrant, so that they mayv serve more than one user at a time.

\ The program may retrieve an item by giving the formal name assigned by

the programmer and supplying a buffer to receive the data. The system traagiates the

\ formal name into the actual item assigned to it by the job description or the job-run

requesi. An item may be written into the data pool in a similar way. The program

'\\ places the data in a buffer and calls the appropriste service routice, giving the formal
\ name of the item to be written.

\ When a program reads or writes paris of the same item repestedly, it may
\ initialize the system by opening the item for reading or writing. The translations to

B T R N

R R T SR

internal item identifiers are accomplished when the item is opened. Later operations
on the item are more direct. This service is especially valuable when reading or writing
the records of a file.

The significant characteristics of the storage and retrieval services are the
gystem's ability to transform item structures and the use of an invariant name in the
prog~—om. The name remains the same ir the program, no matter which items of the
data pooi cre bound to it for a given run. It is completely independent of the location of
the item or of the characteristics of the storage devices.

3.4 INTEGRATED VIEW

The characteristics of DM~1 may be highlighted and their relationships may
Le demonstrated by followiang the development of the twu major system resources and
describing the system in operation. The resources of the system are the data base and
the job litrary,

3.4.1 Data Base Development

The null data pool of the system contains a basic structure that provides logical
space for items to be defined and the structure defirition for a set of directory tables
which descriic themselves only, ‘ \

In the development of a data Me, i\tems are defined to the system by using
svei>m maintenance jobs. Once the structure ‘hag;l been defined, data may be mapped into
*“a data base by other maintenance jobs. These pf'ocesses continue until an initial data
base is developed. Since the data base i8 a constantly varying resource, the structures
and data are repeatedly ohanged throughout the life of the system by system maintenance
jobs and application programs. Each time a change is made in the structure of the data
base, the system directories are updated. As the development progresases, the direc-
tories become richer in content.

‘ The data administrator makes some initial decisions about indexing, linking,
and the access and modification levels »f various users with respect to various items.
' These decisions are continually modified during the life of the system to adjust to exper-
fence and to take account of new developments.

e e rarep—

it

o a C e e . . SIS B T R 7F & T e o LA G

3.4.2 Job Library Development

The DM-1 job library contains a number of general-purpose system jobs for
building, maintaining, and querying the data base and job library. This basic repertoire
of operations can be expanded by adding user jobs to the library. User jobs may be com-
posed by combining appi.cation-oriented programs and the existing system jobs to
achieve the desired unit of work.

New programs are added to the library through the Program Entry job, After
the program has been compiled. it is d2scribed to DM-1, The user specifies the pro-
gram name, tha identifier for loading the object code, and the names and structures of
the program's Inputs and outputs. This operation places the program in the DM-1 job
library. The program can then be used a. a component of a more complex job.

Additional jobs may be created th. ough the Job Description job by combining
the existing jobs in the library. The language of a job description is like a macropro-
gramming language. Each component job is one step in the new job. The job's descrip-
tion consists of a job image and a series of job requests for the steps of the job. The
job image gives the name of the new job and the names of its input and output parameters,
if any. The input and output parameters of the new job are those parameters of the com-
ponent jobs which will not be specified until a job-run request is issued. The job re-
quests for the steps of the new job contain the names of the component jobs and the names
of their input and output parameters. The inputs are related to job inputs, the outputs
of previous components, literal values, and data hase items. The outputs are related to
job outputs, the inputs of sucoeeding compounents, and data base items.

3.4.3 Operational Use

DM-1 operates in association with an operating system which controls a multi-
programmed environment. The operating system recognizea DM-1 jobs as a class.
‘When a DM-1 job is requested, the operating system ensures that the Service Package
is in memory as part of the operating system's input-output control package. One set of
Service Package routines can serve any number of jobs in a time-shared mode.

Figure 3-2 i8 a block diagram that depicts the relationships among the system
components in operational use. A DM-1 job is requested by keying the joL-voquest

3-10

s ey W e e § s S et

&
I3

L g e

i G

Y

P st g T e e

Supervisor
Request
Processor

-

Job
Library

Supervisor
Job

Manager

Task

Task List
and Binding
Liste

Figure 3-2. System Operation, Block Diagram

Service
Package

System
Directories

3-11

message at the console and signaling the operati. system that a DM-1 job is to be ex-
ecuted. The operating system assigns memory to the job according to its own s~heduling
algorithm,

The first step in a DM-1 job is accomplished by the Request Processor. This
is a part of the DM-1 Supervisor which inierprets the job request, prepares the job
parameters, and initiates the job. The Request Processor uses the job name to retrieve
the job description from the library. It develops a task list containing the identifiers for
the sequence of component tasks (jobs or programs). Using the job images from the job
description and the input and output specifications 1rom the job request, it builds the
input-output binding lists to relate the parameters of each task to data pool items. Any
item transformation or conditional selections required in relating actual items to formal
parameters are scheduled by the Request Processor,

The Job Manager is the part of the DM-1 Supervisor that controls the execu-
tion of the tasks of the job. It reads the next task from the task list, loads it, and gives
it control, The task maintains control until completion, unless the operating system's
scheduling algorithm interrupts it. When the task is completed, control returns to the
Job Manager to load the next task. The last task in the tas)x list is the Request Termina-
tion task which performs final housekeeping and terminates ‘he job.

While a task is operating, it uses the Szrvice Package to retrieve and store
its data. The Service Package translates the formal parameter names used by the task
to data pool items by using the binding lists. Data retrieval and storage are accomplished
by the Service Package by using the system directories to locate and interpret the data
pool items.

3~12

R T T R

GBS

SECTION IV. DATA POCL FEATURES

For efiicient use of a common data base, the data must be highly organized
to permit rapid access and simple specification of pertinent items. The fundamental
strategy of DM-1 is to retain data ‘n as flexible and accessible a form as possible by

using system directories. The duta is treated 22 a segmented string whose structure
and syntax are maintained in separate directory tables, which are themselves part of

the segmented data string.

4.1 DATA STRUCTURES

The use of data items related in a hierarchy is a familiar artifice of data

processing, The grouping of unit records behind a header card is an example of the use

of a hierarchy. The entire deck corresponds to a node at the highest level in a tyze

structure. It is e file subsuming a record for each header group at the next level. Each
record subsumes the fields of the header card and a file of trailer cards. The header

each card which, in turn, subsumes the fields of the traller card.

o o b e et e

h n . n " .jxuu& i o

fields are torminal items in the tree structure. Each trailer file subsumes a record for

DM-1 uses several methods of representation for a tree structure. Figure
4-1 contains four different ways of showing the same hierarchical relatiorships among
eleven items. The first form (a) represents each item as a node.

-

Node A ccntains the three subnodes B, C and I. Node C contains subnodes D
and H. Node D contains sutnodes L, F, and G, and node I contains subrodes J and K.
The indented form (b) shows the same relationship among the items by indentiug the
subitems with respect to theif parent items, The subitem form (c) assigns to each item
a size that stands for the number of subitems contained in that item, The parenthetic
form (d) usec parentheses to delimit the level of the items and slashes to separate items
on the same level in the hierarchy. A is alone on the nighest level and is compoced of B,

C, and I on the next level, where C is composed of D and H, etc.

4.1.1 Item Types

An item is a siagle node in a tree structure. The word item is used as «
generic term to include a node and all of iis substructure. In this sense, the e 'ire daia
pocl is a single item. It is a branching structure with a unique node at the top level and
branches emanating from this node to the next lower levels of nodes, and so on, until
the terminal nodes are reached. In the data pool, each node corresponds to a named
dats item and the subtree subsumed by any node represents the definition of that item.
The items recognized by DM-1 fall into several classes:

() Field. A fieid is a terminal item; that is, it contains
no substructure. A fie'd is defined by its name, type,
gize, and units, A name is an alphanumeric string
which is usod externally to denote an item, The type
specifies the coding sch me of *he field. It may be
alphanumeric, integer, binary, octal, decimal, or ex-
ponential, The size is the number of charrcters in the
field (Wlphunumeric characters, binary bits, decimal
digiis, «tc.). The size may be fixed or variable in
length. The unitr designator specifies the scale on
which the value of the field is measured; e.g., volts,
amperes, meters, etc.

(2) Statement. A statement is an item which subsumes other
items. Its subitems may be fields, ifles, or other state-
ments., For example, a statement may contain several
fields. Another statement may contain that statement
and several other items, A statement is defined by its
name anvd the definitions {or its subitems. In effect, the
statemert is a mechanism for associating severa! rolated

(a) Node Representation

ow (3)
(»
(2)
(3)
§)]
"
(£)
()
(2)
0
(9)

Z O m mozZxm o 3
z

oI o - - > T B < I~ e I -

I
v
L
A
E
0
B
A
H

on e SO s <z B > B~ B o -~ B 3 |

v X =z

{b) Indented Representation {c) Subitemn Rep.esentation

A(B/C(D(E/F/GC)Y/HY/T(I/K))

(d) Parenthetic Representation

Figure 4-1. Tree-Structure Representations

L ep e A R b e L

T

L g

§ - TEx

items to show the relationship and permit them to
be treated as a unit. The data value of a statement !
is the set of values of its subsumed fields. v, -

(3) Fije. A file is an item which subsumes an arbitrary
number of subitems, each of which has an {dentical
structure. Its subitems are records. The file is de-
fined by naming it and defining each of the subitems
of its records. The data value of a file is the group
of values of the fields subsumed by all the records of
the file,

(49 Regord. A record is the subitem of a file. It is ;
exactly like a statement in that it subsumes other .
items. Like the statement, its subitems may be . B
fields, statements, fllea, or special itema in any ‘
combination. Unlike a statement, however, a re-
cord may c. ur an arbitrary number of times in
the data. The file and record are related in such
a way that one cannot be separated from the other. .
The record always follows the file, Ii is defined o
when the file is defined. Tbe daia value of a record
is the set of values o the ficlds it subgumes.

(5) Null Node. A null node is & terminal item repr-~senting
a position in the logical structure. it contains no
subitems and it stands for no data. It is an artifice to
reserve a slot in the logical structure.

(6) Link. A link is an itein which logically subsumes a sot
of items on another siem in the tree atructure. It per-
mits a logical connection . etween two branches of the
tree and gives the structure a network character,

4,1.2 U -m Structure

The DM-1 data description language permits the use of variable length fields,
optional itoms, and nested structures. Files with variable aumbers of reco. .s may be
embedded within the records of higher level files. Any number of files, atatement: or
fields may be subsumed by the asnic vecord or stalement,

Table 4-1 shows the dei.aition of the item PURCHASING in the indented out-
iine form. The itan iy 5 statement containing three files. The ITEM file is a catalogue
conteining « record f{or each item which might be ordered on a purchase order. Each
record in the cxtalogue contains three required fields. The DESCRIPTION fleld is
marked as optional by ihe asterisk. The ORIER file is a list of outsatanding purchase

RS I A SRE TS 5 e e T e et

-

3
-
v
*®
EA
)
¥,
&
3
¥
o
B8

i 2

e

orders. Each record contains identifying informsation fce a purchase order wixl un ITEM
LIST. The ITEM LIST contains a record for each item on the purchase order. This is an
example of a file embedded in each record of a higher level fiie. The VENDOR file con-
tains records describing vendors with a list of the active purchase orders for each vendor.

The column headed ICC in Table 4-1 contains an internal system identifier for
oach item in the definition. This logical name for the item is cslled an Rem Class Code
(ICC). 1t is derived from the relative position of the item within the data pool. In the
figure, the item PURCHASING has the ICC 1, sinc. it is the parent node of the entire
structure. Its subitems are numbered on the next level: 1.1 {or the ITEM file, 1.2 for
the ORDER file and 1.3 for the VENDOR file. The records of the files occupy a level in
the structure. The level is represented by an R in the .ICC. The subitems of the records
are mumbered on the next levsl.

Another code, the Iterz Positica Code (IPC), is used internally to identify units
of data in the data pool. The ICC becomes an IPC when a record number replaces each
R in the ICC. For example, the fPC 1. 1. 3. 1 stands for the uniiue occurrence of the
ITEM NO. field (1.1.R. i) in the third record of the ITEM file. The IPC 1.2.5.6 repre-
sents the ITEM LIST file (1.2.R.6) for tbe purchase order identified in the fifth record
of the ORDER file.

The structure diagram shown in Figure 4-2 is another form of iten: definition.
The structure of the PURCHASING statement is shown in a form analogous t. the node
form of structure reprerantation. The shape of the ncde apacifies the type of the item
at that node: an oval for a statement, a rectangle for a file. a hexagon for a record, and
a line for » field. Figure 4-2 clarifies the meaning of the am Class Code as the logical
position of the item in the structure. ICC's are assigned t; itema by counting the iter. .
on each level and moving to a deaper level each time a statement of file is encountered,

4.2 PRIMARY DIRECTORIES

The structura! description of the data is maintained by N M-] i the aystem
directories. The primary directories contain the information from the item definiiion,
The primar; directoriss are the item List, the Term List, end the Terrn. Encoding Table.
These are used to focus in on the data « d to describe its structure. They functior as a

puide i. . terpreting the data so that it may be delive.ed to a program in a suitable form
for processing.

TABLE 4-1. DEFINITION FOR THE .PURCHASING ITEM

B ICC - ITEM DEFINITION
1 PURCHASING, S
1.1 ITEM, F
1.1.R.1 ITEMNO., I,V
1.1,R.2 VENDOR NO., I, 4
1.1.R.3 PRICE, E, V
1.1.R. 4 *DESCRIPTION, A, V
e ORDER, F
1.2.R.1 P.O. NO., I, 6
1.2.R.2 DUE DATE, D, 6
1.2.R.3 REQUESTOR, A, V
1.2.R. 4 VENDOR NO., I, §
1.2.R.5 VALUE, E, V
1.2.R.6 JTEM LIST, F
1.2.R.6.R.1 ITEM NO., I, V
1.2.k.6.R.2 QUANTITY, I, §
1.2.R.6.R.3 COST, E, V
1.3 VENDOR, F
1.3.R.1 VENDOR NO., I, 4
1.3.R.2 VENDOR NAME, A, V
1.3, K. 3 VENDOR ADDRESS, A, V
1.3.R. 4 ORDER LIST, F
1.3.R.4.R.1 P.O. NO,, I, 8
1.3.R.4.R.2 REQUESTOR, A, V

23 i;‘g.\‘

4-6

-

bt o e e e T b an s 200 mvigs S ra

R L T — e e e em e e e e e e

1
2 Order |. ;
3 Vendor R l < > | 1] Hem No.
R EC‘D 1| P.O. No. 2| Vendor No.
1] Veudor No. 2| Due Dat 3 Price
2| Vendor Name 3{ Requestor 4| _Description

3} Vendor Address 4| Vendor No.

4 *{Order Llst' 51 Velue

R E{D 6 L{Ttem List

e ———
3 Bequasto;'_ 1{ Rem No.

2 Qmuty

3] Coat

Note: The letter "R" indicates that the item i8 a record wiich is repeated ia the
data as many times a8 the iten is recorded.

Figure 4-3. Purchasing Rem Structure

47

S 8t NS e SRV o 1 180 RO B 3 i BB

42.1 temI't

The Item List is it toe cenie™ o' » divectory system. I is a file with a
recoid for each item mide” +ha (.- p " 'ruct» The records are in order by
the Bem Clase Ccue of ™ tem. i . .em i< _nt~y contains the item type and the
size of the item. The size of ~ecc ds am™ s wmer . . the number of subitems they

subsume directly.

The iem List ulso contan-s othe. wo0” a..on about the item. However, the
primary structural information is the itemn tyre ind size. Other parts of the Item List
entry will be discusscd in other sections o7 t*'s report, The detailed structure of the
Itemn List is presented in Volume O, Parngraph 2.3.

Table 4-2 shows the Item List {or the PURCHASING item in the third column.
The item type and the size are showu in each entry. The optional DESCRIPTION field
is flagged with an asterisk. The structure of an item is implied by the sizes given for
nonterminal items.

4.2.2 Term List

The item names aml units are maintained in a Term List file which is parallel
to the Item List file. These e.ements arv maintained separately hecause they are not
needed to interprut the data structure and it ia desirable to store the structural informa-
tion as compactly as possible in the Rem List. For each record in the Item List there
is a record in the Term List, and the corresponding record numbers contain informa-
tion about the same item.

4.2.3 Term Encoding Table

The item name is used as the identifier of the itemy by DM-1 users. The ICC
is used as the identifier by the system. To enable the system to translate from 2. ilew’s
name to its ICC, the Term Encoding Table (TET) is maintained. The TET is - i .
containing a record for each unique item name in alphabetical order. The orde: g per-
mits rapid transiation from an item's name to its ICC. Since there may be more than
one item ‘ith a given name, each reocord of the TET containa a file of ICC's corresponding
tc a singls name, Table 4-3 shows the Term Encoding Table for the purchasing statement.

W e - v A b e st et

[A

Ml

#

e s S

L3z A L] e

TERM LIST

PURCHASING
ITEM

ITEM NO.
VENDCR NO.
PRICE
DESCRIPTION
ORDER

P.O. NO,
DUE DATE
REQUESTOR
VENDOR NO.
VALUE

ITEM LIST
ITEM NO,
QUANTITY
COST
VENDOR
VENDOR NO,
VENDOR NAME
VENDOR ADDRESS
ORDER LIST
P.u. NO,
REQUESTOR

TABLE 4-2. TERM LIST AND ITEM LIST
Icc

1

1.1

L.1.R
1.1.R.1
1.1.R.2
1.1.R.3
1.1.R.4

1.2

1.2.R
1.2.i.1
1.2.R.2
1.2.R.3
1.2.R. 4
1.2.R. 5
1.2.R.8
1.2.R.6.R
1.2.R.6.R. 1
1,2.R.6.R,2
1.2,R.6.R.3
1.3

L3R
1.3.R.1
1.3.R.2
1.3.R.3
1.3.R.4
1.3.R.4.R
1.3.R.4.R. 1
1.3.R.4.R. 3

4-§

ITEM
LIST
s, 3
F,V
R, 4
LV

I, 4
E, 6
A, V¢

- ~ n
<®?®w g ¢ g9 wagagPge®a g

-

U

o

-

L

Py
-

-

:“w:ﬂ>>

>

TABLE 4-3. fm ENCODING TABLE

NAME

COST
DESCRIPTION
DUE DATE
ITEM

ITEM LIST

ITEM NO.

ORDER
ORDER LIST

P.0O. NO,

PRICE
PURCHASING
QUANTITY

REQUESTOR

VALUE

VENDOR

VENDOR ADDRESS
VENDOR NAME
VENDOR RO.

/

I1CC FILE

1.2.R.6.R.3
1.1.R.4
1.2.R.2

1.1

1.2.R.6

1.1.R.1
1. 2IR. GORO 1

1.2
1.3.R. 4

z.R. 1
3.R.4.R.1

1
1.

1.LLR.3

1. SQRQS

1.3.R.2

1.1.R.2
1.3.R. 4
1. a‘R. l

‘

In practice, the names of other itcms in the data pool would be merged with the names
of the items in the purchasing stateraent in a single TET,

4.3 DATA REPRESENTATION

DM-1 treats the entire data pool as an unformatted stream of binary bits.
This stream is segmented arbitrarily at any item boundary. Since no account is taken
of word boundaries or the coding mechanisms of the devices, th: data pool segments are
independent of the characteristics of the computer and the storage devices. The ser- .
vice routines that interpret the data stream with the aid of the sy: tem directories are
«womputer dependent. This approach focuses the computer dependence of the system
in a small set of routines.

4.3.1 Data Stream

A hypothetical example will be used to explain the system's mechanism for
representing data. Figure 4-3 (a) contains a structure diagram of a statement named
A. Tt consists of the field a, the file B and the field h. The file B contains the field b,
the statement C, the file D and the field g. The statement C contains two fields and
each record of D contains two fields. The subitem representation of the structure is
given next to the structure diagram. This is the form in which structure information
appears in the Item List.

The files, records and statements in a structure relate their subnodes as a
single entity, but only the fields take on values in the data. The diagram in Figure 4-3
(b) emphasizes this character of a structure. It shows the string of fields, a through h,
emanating from vertical bars and representing the nonterminal items. The diagram
in Figure 4-3 (c) is derived from the buss network. It is a maze which defines the
logical order of iters ip the structure. The nath through ‘e maze hegins at e ton
“eiv. T oiiralect 18 &b item A, Since this is a nonterminal liem, the maze must be
followed to the right until a field is encountered. At the field a, the maze contains a gap
which opens to the next subitem of the statement A. The file B is a nonierminai item
and its subitems, the records of the file, are aiso nonterminal. The path moves to the
right until the field b occurs with an opening to the next level. This pattern continues
through the maze, passing the items of the structure in their data base order:

A,n,B,"R",b,C,c,d,D,"R",e,f,g, and h.

St

s

{a) Struc‘ure Diagram

Al s
B
L..J
h

| PSR-
A nl

{b} Buss Network Disgram

B e b
C ¢ N
A
D K e
{
£

v |

(¢} Biruciure Maze

Figure 4-3. Sampie Structure

4-12

A (3)

2 (®
B (R)
"R(4)
h-(f)
C (2
c (#
d (@)
D(R)
"R"(2)
e ()
t (#)
R
h (M)

o AR o AR

NI g s S Can s L . . e e e e e e vy iy

The fem List is like 2 .emplate in the form of the maze and is to be used to
interpret the unstructured string of data valves. Only field values occur in the data
stream. An example of a data maze is given in Figire 4-4. The data stream, repre-
sented in the figure by the column of subscripted letters at the rights, consists of
vaiues for the fields. The interpretation of this data stream, with the Item List as a
template, is symbolized by the path through the data maze. The example assumes that
there are three records in file B, with three records of file D in the first record of fiie
B, four in the second, and two in the third.

4.3.2 Segmentation

The fields in the data stream must follow each other in the strict logical se-
quence dictated by the data pool structure. This does not mean that the data must be
stored in a strict, physical sequence. DM-1 segments the data stream and incorporates
the ability to store the segments ahywhere on the available devices. The logic of the
system permits the segments to be of arbitrary size, hut a size of 9216* bits has been
selected for convenience.

In writing data, the fields of the data stream are composed in memory blocks
of segment size under the direction of the Item List., When a segment is full, it may be
stored in any available location of any storage device. The segment is identified by the
Item Position Code (IPC) of the first item it contains. This IPC is used as the key when-
ever the segment is retrieved.

Each segment is assigned a segment name which is used by the operating sys-
tem to retrieve the segment. DM-1 11aintains a Segment Name List (SNL) so that it
may transiate an IPC into the segment name oi the segment containing the data identified
by the IPC. The Segment Name List is a file whose records contain the IPC of the first
item in a2 - 3gment and the segment's name. It is segmented like any other data, and
the existence of SNL entries for SNL segments permita the system to focus rapidly on
the desired segment through a multilevel, variable depth, indirect addressing .nechanism,

* The number 9216 is divisible by 2,3,4,6,5,9,12,16,18,24,36,48, etc. Itisa
convenient number for devices with many word lengths.

4-13

IRl . TP TS 0

S Ter TR TR TR T T R

L%
1.1
1.2.1.1
1.2.1.2.1
1.2.1.2,2
1.2.1.3.1.1
1.2,1.3.1.2
1.2,1.3.3.1
1.2.1.3.2.2
1.2.1.3.3.1
1.2.1.8.3.2
1.2.1.4
1.2.2.1
1.2.2.2.1
1.2.2.2.2
1.2.2.3.1.1
1.2.2.3.1.2
1.2.2.3.2.1
1.2,2.3.2,2
1.2.2.3.3.1
1.2.2.3.3.2
1.2.2.3.4.1
1.2.2.3.4.2
1.2.2.4
1.2.3.1
1.2.3.2.}
1.2.3.2.2
1.2.3.3.1.1
1.2.3.3. 1.3
1.4.3.3.2.1
1.2.3.3.2.2
1.2.3.4

1.3

Data Stream
A a l a
B R=1 bl bl
C, % i
dl dl
D1 R=1 o, 1__| e.,
‘ll fll
R=2 °12__ 37
!12 ’u
R=3 ° 13__ | €4
15 13
& %
R=2 bz b2
Cy 2 2
4 4
Dy R= 2| °3
‘21 !21
R=2 022—_ L%
hs f
R=3 ®23 e ®23
_ faq fys
R=4 L2) €24
“ '24 ‘21
E,)
= H{EX] b:‘ b!)
€3 s %
93 4
n,\\ R=1 4 LN
-
51 4
! Rel __:32___ : 32
n 33
b] L
! h

Figure 4-4. Data Maze

4-14

| e T e IR T

Rl

g v

M N

4,3.3 Segment Index

The Item Litct does not contain encugh information to allow DM-1 to interpret
the data stream. It gives the fixed size (number of subnodes) of records and statement
and the size for each fixed length field. However, there are twu levels of variability
which must be taken into account. The sizes of variable length fields may differ from
one value to the next. The Item List contains only one entry for a field which may take
many values. Similarly, the size of a file, i.e,, the number of records it contains,
varies from one occurrence of the fiie to the next, A file embedded in a L igher file oce
in each record of the higher file, but it has only one entry in the Item List,

The segment index, a string of bytes in tue data segment, gives the size for
variable length fields and the number of records for files in the order of the occurrence
of the variable items in the segment. The segment index for the data stream of Figure
4-4 might be:

3 18 3 7T 5 4 20 12 2 8

B ¢ Dy 3 ¢ D2 8 c3 D3 g

if the fields c and g are variable length. Since the first variable item encountered in the
stream is the file B, its size is given {irst in the segment index. The file has (" ree
records. The next variable length item in the stream is the field c. its value in the
first record of file B is 18 units (bits or characters)long. The field g has a value whos
length is seven units. The remaining numbeys of the segment index give the sizes of
the field C, the file D and the field g for their occurrences in records 2 and 3 of the

file B,

4.4 SAMPLE R JTRIEVAL

An example will be used to demonstrate the use of the system divectories in
the retrieval of an item of data. The example is somewhat artificial because it is takea
out of context, and it must be simplified to highlight the relationships without burdening
the reacer with undue detail.

The PURCHASING item, introduced in Table 4-1, Figure 4-2, and Tables 4-%
and 4-3 will be used as a basis for the example. The directories for the item are ahows
in Figure ¢-5.

4-15

S ate g;x-«&g;,fj

S

oot st

S

St RGeS

nty V5P S0

R T

B2y = i n

TERM ENCODING TABLE ICC ITEM LIST _SEGMENT NAME LIST

Name cc | Tyos | Size identitier | *EDETE :
Cost 12R6R3 1 8 3 (1 58469
Descripticn 12R4 11 r \'% (I) 1.2.R.2 87466 .
Due Date 12R2 11R R 4 ~{ (1) 1.3 42879 '
Item 11 11R1 1 v (N) Ceat 74346
Ttem List 12R6 11R2 I 4 —{ (N) Order 49632 ! i
liem No. 11R1 11R3 E 6 (N) Quantity | 89248 .
12R6R1 11R4 A v () 1 73248 ‘
Order 12 12 F v {$) 1.1.68.4 | 25321
Order List 13R4 12R R 6 (S) 1.1.132.2 | 64843
—{ P.0. No. 12R1 12R1 ; 6 (S) 1.2.5.3 46932
13R4R1 12R2 > 6 (S) 1.2.23.5 | 65147
Price 11R3 12Rs A Vo .
Purcha ng 1 . 12R4 I 5
Quant-y 121{6K2 A 12R3 E v i's]
-»{ Requestor 12R5 12R6 2 v (S) 1.3.10.2 | 87933
13R4R2 12R6R k 3 ~ (S) 1.3.48.3 | 34658
j Value 12R5 12R6R1 I \Y (S) 1.%.64.1 | 24863
| Vendor 13 12R6R2 I 5 (5y i3 871 | 32178 |
| Vendor Adde. | isR3 12R6R3 F 7] ‘
| Vindor Name | 13R2 13 - F v
-{ Verdor Ne. | 1iR2 13R R 1 ’
12R4 121 I 4
L _ L 13R2 A I v
13R3 - A v
L3R4 F v
13R4R R 2 ‘
13R4R1 = 6 -
13R4e A L v)r]
‘!

Figure 4-5. Dt ectories for w.e Purchasing Item

Suppose that a user wants to retri-ve the purchase order numbers for pur-
chase orders issued by J. Jones against the vendor whose number is 32¢4. The request
might look !ive:

RETRIEVE: P.O. NO
"IF VENDOR NO. = 32¢4 AND
REQUESTOR = J. JONEb

This request would be handled by the query job; however, the steps explained in this
section are common to many retrieval situations. The details are greatly aimplified
and the condition is selected so that an crderly retrieval results. The general condi-
tional search capability of the system is more comprehensive than this example implies.

4,4.1 Name Translation

The item names in thc request must be translated to the system identifiers,
the {CC's. This is done through the Term Encoding Table (TET), The TET is a data
file like any other data in the system and it is segmented. The names are translated
to ICC's by retrieving the appropriate segment of the TET and searching its entries until
a match i= found on the names. This is handled by . system service routine,

The routine firet uses the Segment Name List (SNL) to discover the segment
of the TET to retrieve. The SNL entries for the TET are prefixed with a special identi-
fier., The SNL of Figure 4-5 shows some entries prefixed with (N). These are TET
entries. To translate the name P.O. NO., the routine takes these staps:

(1) Mutch the name against the identifiers in the SNL
unti] an identifier less than or equsl to P. Q. NO. is
{ound, where the nexi entry has an id¢ ~tiffer greater
than P, O, NQO, Since the entry sought falls between
the igentifiers, it is in the segment identified by the
first of the two identifiers. In the SNL shown in
Figure 4-5, the name P, 0. NO., is found to fall be-
tween OLDER and QUANTITY. The TET segmet
containing the entry for P, O, NU. is, therefore, the
one w..ch begins with the entry for the nume ORDER;
the segment's name is 49632,

(2 Retrieve the segment of the TET containing the desired

entry, and search the TET entries unti] 3 match is
found, In the TET in Figure 4-5, the entry for ¥, . XU,

4-17

PR P

is found in the second segment. There are two items
with that name: 12R1 and 13R4R1. Only one of these
is needed. The choice must be made by the use of
qualifiers or by the context of the problem. For ex-
ample, the qualifier VENDOR could have been used

in the problem statement to indicate that all pertinent
items are subsumed by the vendor file. This would
dictate the selection of the ICC 13R4R1 for P.O. NO.,
since VENDOR has the ICC 13 and is a parent of the
pertinent item.

(3 Follow similar steps for the names REQUESTOR and
VENDOR NO. The consistent set of ICC's discovered
for the three names is:

P.0. NO. = 13R4R1
VENDOR NO. = 13R1
REQUESTOR = 13R4R2

4.4.2 Search Strateg

The structural relationships among the items in the sample retrieval request
dictate the strategy of searching for the pertinent purchase order numbers. The ICC of
the P. O. NO, fleld, 13R4R1, contains two record nmmbers. The condition on VENDOR
NO. and REQUESTOR is used to set these record numbers to the values which mcet the
conditions. The search strategy ised in an actual query job is more comprehensive
than the one to be discussed here.

The best strategy is to establish the record numbers which meet the conditions
at the higher level first. This narrows the number of files which must be searched at the
lower level. The condition on VENDOR NO. is the key to establishing the record numbers
at the higher level. Only those records which contain the value 32¢4 for VENDOR NO.
need be considered.

There are several ways of determining which records contain the key value.
If the fleld is indexed, the system maintains u subsidiary directory table that relates
each value the field assumes to the set of record numbers containing the vaiuc.- Indexing
will be discussed in Paragraph 4.5. If the {ield e no’, index \d, the £la w. "2 rocord
numbers are to be established must be searched wo detormine the revords which contain
the key value, For the purposes of this example, assume that record number 51 is
found to contain the value 32¢4 for the fleld VENDOR NO,

4-18

The second record number need be . tablished only within record number 51
at the higher level. If the higher file contains 100 records, there are 100 files at the
lower level. Establishing the record number at the higher level first eliminates 99 files
from consideration. Effectively, the ICC of the pertinent purchase order numbers is
translated from 1.3.R.4.R.1t0 1.3.51.4.R. 1, with only the record number of one file
to be established by further operations. The condition on the field REQUESTOR estab-
lishes 'he record numbers in the lower level flle. Again, the subsidiary directory is
used if the field is indexed, or the file i8 searched if it is not. In this example, assume
that record r..mber 12 is discovered to contain the key value J. JONES for REQUESTOR.

O each level, more than one record number might meet the condition. In
general a multidimensional array of record numbers is developed from a condition. The
array provides the appropriate record nunbers for any set of desired items to be re-
trieved under the condition. The retrieval steps discussed in the following paragraphs
are performed for each set of related items aund for each of the record number groups
which meet the condition.

The retrievai steps will be discuss=d for the retrieval of the purchase order
numbyz in the 122 record o the order list file which is in the 518 record of the VENDOR
file. The condition established these record numbers which convert the logical identi-
fier of the desired field, P.O. NO,, from the ICC 1.3.R.4,R.1 to the IPC 1.3.51.4.12. 1.

4.4.3 Data Segment Retrievai

When the 1PC of the pertinent item is known, .he data segment containing that
item can be retrieved through the SNL. The asteps discussed are used for random re-
, trieval of any item in the data pool or for initializing an item for serial proocessing or
o 4 random processing within the bounds of the item.

The first step iz to obtain the segment name and the range of its data contents
from the SNL. The desired item has the IPC 1,3,.51.4.12.1. As shown in Figure 4-5,
thia 11°C fi_ls between the segmen! !dentifiers 1.3.48. 3 and 1,3.64. 1., The desired item

is within the segment named 34658 with other data ranging be tween the bounding identi-
fters.

4-19

The next step is to prepare an Item List Table to act as the structure template
of the part of the data atream contained in the segment. Since both boundaries of the
segment are within the file whose ICC is 1.3 (the VENDOR file), the definition for that
file is sufficient to interpret the entire data stream within the data segment. The seg-
ment of the Item List which contains the definition for the VENDOR file is _etrieved
tarough the SNL. The segment needed is 42879 as shown in the SNL of Figure 4-5. This
Item List segment is retrieved, and the definition for the VENDOR file is mapped into
the Hem List Table,

The data segment (34658) is retrieved and the Item List Table is initialized N
80 that the system can step through the data stream segment to the desired item. This
is accomplished by stepping down the Item List Table to the entry corresponding to the
first item in the data segment (1.3.R.3 corresponding to 1.3.48,3), thereby setting
parameters which diract the system in further stepping.

4,4.4 Data Stream Interpretation

At this point in the example, a segment of the data stream is available with
the part of the Item Lis: needed t» int pret it. The system steps from the item 1. 3.48.3
to the item 1.3.51. 4. 1% , which is the desired purchase order number. The stepping
is accomplished by sumn:i:ig the sizes of each item preceding the desired item to develop
a pointer to the precise i 1 ocatioc of the desired item within the segment. The sizes of
fixed length ficlds, recorcs, :nd sta:ements are obtained from the ltem Lis: Table. The
sizes of variable length fields and files are obtained from the segment index, Sizes are
accumulated and the IPC of each item is developed until the IPC of the desired item is
reached. The value for tnis item may be extracted for display or processing.

4.5 INDEXING

An optional feature offered by DM-1 is the abil‘ty to index selectod fields. When
a {ield is indexed, the system inaintains a subsidiary directary table relating the values
assumed by the Held to the numbers of the records in which thoase values occur.

The indexing ieature prov. a8 a tradeoff between the speed of reirieval and the
size of storage required. When a field used in a condition is indexed, the system can
focus very rapidly on the pertinent items without searching the duta stream. This is

4-20 ?

FUTOURURIGRPIC - T S

accomplished oy maintaining » Field Value Table (FVT) and an R-Value Index Table
@RVID which occupv ~ddisional storzge «mace and must be updated cack ‘ime a change

is made tc ‘us ot f values for the [lgid.

the payoff for !sdexing a field 18 rveadily apparent when the alternatives avail-
2.2 w ouie 9ystem o luterpreting e condition are invesiicated. In the preceding section,
the ~ouceval example includcd the condition:

VENDOR NO. - 3204

™- t~gte VENDOR NQ. oncurs in each record of the VENDOR file. ihere may be
aundred- of such records, Since each recori ~ontains a subsumed file, the cccurrences
of the VENDOR NO, fieid are widely dispersed through the data stream. If the data
stream mus: be searched to determine the records which meet the condition, there is

a high likelthood thui a different segment retrieval will be required for each record to
ve checked. This amounts (. several huncred segment retrievals.

If the VENDOR NO. fieid is indexed, the values it assumes are stored in a
compact file with a ilnk to the list of recora numbars which contain that value. There is
a high likelihood that the (i st segment of the FVT retrieved will contain the desired
value. If there is orly one record meeting the condition, its value is stored in the FVT
and the search is finished with one segment retrieval. If there are a number of records
with the key vilue, the list of record numbers is maintained in the RVIT, A link in the
FVT entry for the key value points directly to the vecord number list. In this case, the
search is accomplished with two segment retrievals. Either way, the time saving is
great. The payoff is greatest for records of filas at a high level which contain emuvedded
files, and it improves as the number of records in the {ile increases.

An indexed field is tagged in the Item List with a code specifying the type of
indexing: all values, ranges, or selected values. The Item List entry for an indexed
field contains a3 record uumber which identifies the apecifi~ Field Value Talle for that .,
field. When the system needs to determine the record numbers for the occurrences of
an indexed fleld which cuatains a given value, the record number in the Item List entry
cooverts the ICC of the FVT, 1.2.5.R. 4, to an IPC. The corrcot FVT can be retrieved
directly, and the entry containing the given value can be found. This record contains
the record number sought, if there is only one occurrence of the {ield with the given

4-21

et T S S AN Y. AR AN M AR b

value. Otherwise, the FVT record contains a record nun ber identifying a specific
RVIT file which contzins the list of record numbers for the occurrence: of the field
which contains the given value.

4.6 LINKAGE

The data pool is basically a tree structure. Each node has a single parent
node and may subsume a nuniber of subnodes. In order to relate separate items in a
tree structure, they must branch off from a common stem of the tree at the point they
have in common.

Figure 4-6 (a) is a node diagram of the pure tree structure for the PUR-
CHASING item (Figure 4-2). The fields in the VENDOR file, VENDOR NO., VENDOR
NAME, and VENDOR ADDRESS, are related because they are all attributes of a vendor.
The list of outstanding purchase orders against the vendor, ORDER LIST, is also an
attribute of the vendor. The relationship among these four items is shown in the tree
structure by placing them as direct subitems of the record of the VENDOR file. The
fields of the purchase order file, ORDER, and the list of iteins ordered have a similar
relationship, They are 2!l attributes that describe a purchase order, so they are de-
fined as direct subitems of the record of the ORDER file.

The VENDOR file and the ORDER file are two elements of purchasing infor-
mation. This relationship is shown in the tree structure by subsuming both files dir-
ectly under the statement PURCHASING. However, there is another relationship be-
tween the two files which is not shown in the structure. All the attributes of '« purchase
order are pertinent descriptors for the purchase orders in the list for a given vendor.
This could be shown by placing the entire set of purchase crder atributes in each
record of the file ORDER LIST. This results in a gross redundaucy if the existing
purchase order file is retained. If that {ile is ¢liminated, the purchase order infor-
mgtion i3 avallable in the VENDOR file, but it must be grouped by vendor in that part
of the trec structure.

It can be assumed that the high activity use for purchase order information
is accomplished more coaveniently if the ORDER flle is retained in purchase order
number sequence as s direct subilem of the PURCHASING statement., Also, the detsiled
attributes of a purchase order are needed ouly rarely when processing the VENDOR file,

4-22

Ja—
PR AL AN "
45 T AT NN v . i oot 1t oo . » L) —

Purchasing

Item

\

Vendor Price Description
No.

Item No.

ltem List

Vendor

o d ~o

Due Reguestor Vendor Value
Date No.

PO, No,

Order List

N\

1. O, No. Requestor

Item No. Quantity Cost

Vendor Veador
No. Name Address

(1) Pure Tree Structure

Purchasing

Item
Vendor Vendor Veador / Vendor Price Description
No. Nam: Address No.
Y,

\\o\nmo R
1.4, No. Due Requestor Vemdor Vaulue
Date No.

(b} Linked Netwotk

Figure 4-6. Tree and Network Diagrams for the Purchasing Item

R AP i

and such information is superfluous most of the time. In such cases, a logicel link

can be established to cut across separate branches of the tree structure. The link shows
the relationship between its source and target items and allows it to be exploited while
eliminating the redundancy of duplicate items and permitting the high activity data to be
stored compactly, The high activity data can be processed much more efficiently when
superfluous data is removed to a logically independent node, yet rarely used data can

be associated with the source item when it is needed.

Figure 4-6 (b) shows the same purchasing informatior in a structure which
makes liberal use f links, Mcure ¢! the relaticnships among the items are shown with
less redurdancy. The same item is shown in the structure diagram in Figure 4-7. The
VENDOR file contains only the fields which describe a vendor. The list of purchase
orders against the vendor has been replaced by a link to the records of the CRDER
file. Each record of the VENDOR file is linked to the set of records in the ORDER file
which have a VENDOR NO, field equal to the VENDOR NO, field of the VENDOR record.
Logically, each VENDOR record subsumes a purchase order file for one vendor, with
the full set of descriptors for each purchase order. Yet the VENDOR file remains a
compact list of vendors' attributes and no duplication of data is required. The ORDER
file may be maintained ‘vithout re ference to the VENDOR file. The set of records
associated with a given -:ndor is automatically redefined by changes in the VENDOR NO.
field (the link criterion) n the ORDER file,

Similar links have been established in Figure 4-7 to relate other items. The
ORDER f{ile contains a link to a record of the LISTS file where the list of items on that
purchase order is mainizined. The link criterion is the purchase order number. Also,
each liem in the ITEM LIST file is linked, by item number, to 1 record in the ITEM
file. This makes the {ull iten. description logically available with each item on the
purchase order withouo cluitering the ITEM LIST file for the majority of uses.

A link connects two items, i.e., a source and a target. The source link is
an iterr with some characieristics of a statement. It subsumes the link criterion, a
field wnose value is the ki to closing the link, The target link subsumes the criterion
field in the target branch of the trce. When the values of the criterion field are equal
in the source and target links, the target link's parent item is logically subsumed by
the source link. The sou-ce link operates like a file whose records contain the items

;

YT \ia woy Jmswyoang *1-3 eundy g

SNT¥A] ¢

$95IPPY 0pusA] ¢

¢ Jopuep }— ¥ SWON TOpaS A

W8N JOPUGA | 7

D

uonduioseq] %
| ¥ S
oLd] ¢ -
T —
"ON aopuspl z
"ON Waiy 1 £
319PT w ,
! T f97Y N .
e
way
1

of the target structure for each occurrenc? of a match between the source and target

criterion values,

The system follows a link through a subsidiary directory, the Linkage Table.
A link item contains a record number in its Item List entry. This leads to an entry in
the Linkage Table, which contains the ICC of the matching link. Both scurce and target
links have entries in the Linkage Table, permitting the system to follow a link in either
direction. The tsrget's substructure is subsumed by the source link, and the source's
superstructure subsumes the target link,

4.7 DATA INTEGRITY

A data protection system mur provide for safeguards against accidental or
malicious actions of authorized and no .uthorized users and data destruction caused by
hardware or software bugs (including failure of the data protection system itself). This
objective can be s:ated in terms of the following sub-goals.

(1) Data Security Checks must be provided to protect the

user against invasion of privacy by protecting his data
against unauthorized read and write operations.

(2) Data Validity Checks must be provided tc protect
authorized users against collicions of data usage in a
time-shored common data base and to protect the data
base against illegitimate modification by authorized
users.

The data protection mechanism is built into the resident reentrant Service
Package which responds to all user data access and storage requests, Since these rou-
tines perform all data access and storage operations for all users, the constraints with
regard to data usage for these routines must be inherited from their parent jobs and

not be inherent in the routines themselves.

PR Security Safeguard

The system of data protection employs two separate but interacting mechan-
isms: security level, and accessr/modification rights, Each data item class is assigned
a security level for access and another level for modification from one of eight classi-

fications, * Likewise, euch user -ceives a clesrance level which gives him access and

* In practice, security levels will range from 0 (unrestricted, to 6 (highest restriction),
and clearance levels wiil range from 1 (lowest clearance) to 7 (no constiaints).

4-26

S snet e e

modification rights to all items below his level. His rights to items cl.ssified at his
level or above depend upon whether or not the item requested is on his access-rights or
modification-rights list. A tuble of such rights, negotiated with the Data Administrator,
is maintained for each user. A message to the Data Administrator is prepared for each
unauthorized access or modification attempt.

Two degrees of access/modification rights will be recognized. The simpler
is a right to a class of data given by item name, such as a file. A more discriminating
right is to a particular subset of records in a file, where the subset is made conditional
on a data check. An example of this is the right to specific raw data such as test re-
sults only if the data satisfies a condition, such as a given value in an identity field.

4,7.2 Validity Safeguard

The approach to access or modification rights solves the problem of data in-
tegrity with regard to controlling access against unauthorized users. However, by itself,
it does not protect the data base against destruction of data by system failure ov hv author-
ized users acting on the basis cf invalid information, This aspect of the integrity-ensur-
ance problem is solved by a combination of devices and procedures which hinge on the
ability to identify and recognize the edition (or ''generation') of data, both on an shsolute
basis and on a relative basis, i.e,, relative to a specified "current’ edition.

Edition control provides the ability to detect and control collisions in data
usage arising from noncoordinated, overlapping read and write operations by independent
users of a common data base. A graphic example of collision of data usage arises in an
on-line reservation system in which two agents attempt {o rescrve the same spice. When
the agents query the system for space availability, the reply contains an edition number.
When a reservation is atter-nted, the transaction must cont~*n that edition number, which
is checked by the svstem and incremented when the space status is upduted. The reser-
vation is then confirmed to the agent. An independent uttempt te reserve space on the
basis of the original status message will be rejected as the edition number check will
fail.

4.7.3 Item Lockout (Busybit)

Comprehensive data maintenance operations which perform stiucturai modifi-

cations over multisegment data sets present additional conflict and protection requirements.

4-27

i L

nosye ks @rtganong, vult Jse s re alowrve safeguards may not ce suffioonr to s nsure

valid operations tf the dars <er beong monified is used maependently during we main-
tenance operation. Te vrovide for such protection, temporars data lockout is provided
by i “bugvint in the SNL entries tor the dats being modified. This bit, set and reset

at the request of a maintenunce job, effectively locks out use of any data in a class during
the time the privileged maintenance job is running,thus ensuring that all data delivered

to users is cousistent 'vith the Item List.

4,7.4 General Procedure

‘There are two three-hit ficlds in each entry of tne Item List assigning security
restriction levels to the item, one for access and one for modification. Levei 0 will
designate unrestricted data and level 6 will designate the most highly restricted datu.
Restriction levels are assicned sc as to he nondescending when moving from an item to
its parent item. Each user is assigned a clearance level which gives him unconditionai
access to all data whose restriction level is below his clearanre level, Access or modi-
ficaticn to data ciass®cd ut or above the user's clearance level is conditional upon
whether the data belongs to the class of data for which the user has specific rights (Open
Class) or :icets a conditional check for unique items (Field Condition).

A user can he assigned a (lass of data items or specific data items expressed
as a4 field-value condition, tor which he has explicit rights, A rights check will he made
only if a data request fails the clearance check. The usual rules of inclusion of items
in an item clase hold for the rights check. In the case of a [ield-value condition, the
user is permitted access only to those records containing a field whose value is specified
in the Ficld Condition list in his entry.

4.8 THE DATA POOL

The data pool contains all items of data under the contrel of DM-1. This in-
cluden the data base, the system directories and job library, a set of application-criented
work items, and a set of transitory scratch items for task-to-task comm'. cation of in-
termediate data.

Figure 4-6 shows the entire daia pool as a statement subsuming four items.

4-28

! { Uaty Pooi
1 J\ Data B.‘,lS(’)

3 ~ .
{ Directory)

3 ~—‘J Work Area)
«{ Scratch Area)

Figure 4-8. The Data Pool

The data base is a statement whose substructure is defined as the system
evolves for a given application, It is under the control of the Datu Administrator, and

it represents the primary data resource of the system. The data base is the consolidated
repository for data to be used in common in serving the information needs of the user
group. Its structure might be relatively static after the initial transition period, but

the data values change constantly to reflect the changes in the operations, events, and
objects about which information is retained.

The directory is a statement whose substructure is defined the same way for
any appiication of DM-1. It contains the system information describing the data poo!
and the programs under the system's control. The Item List, Term List, Term Encoding
Table, Segment Name List, index files, link tobles, data integrity tables, and job library
files are all subitems of the directory statement. The structure of these items is con-
stant, Section II of Volume II deceribes the structure of = | 1" wotnw: in dnt Iy

N & 87

dat. ' .u the directory are changed by system jobs and routines to reflect changes

in the structure of the daiu pool, segmentation of the data stream, composition of the 0"
{ibrary, etc.

The work area is a statement which subsumes application-oriented items. Thev
may be private fllse developed from some operations on the data base or items used by a
class of users. The work area is the repository of data to be communicated from iob to

g St e, e s

a2, a0 AN

.

job. Data derived by querying the data peol or developed by a user or zysterm ioh muy

be stored in the work area, so that it can bhe used as input to luter jobs.

The structure ot the work areu evolves under the direction of the system's
users, Some items are defined by users and are used to contain relatively permanent
data, Other items are defined by users and are used repeatedly to accept the output of
a frequently callec) b, Still other items in the work areca are defined by programs
which create items in performi.g their function. For example, the query job defines
the structure of the item it produces, based on the request, Its outpu: might he stored
as a work item with a user-assigned name and a program-assigned struciure, On the
other hand, a frequently vequested query might be bound to a prestructure item in the
work area at the user's request. The data in the work area changes primarily as a

result of the execution of jobs whose outputs are bound to work-area items by the user.

The scratch are. ‘s a statement which is used to contain transitory items,
These are items which are intermediate rcsults in the execution of a particular job,
Such items are created by the sy‘stem in preparing for the job or during its execution
and ure deleted by the system at the end of the job. Tue substiucture of the scratc:
item's statement is constantly changing to reflect the temporary storage requirements
of the set of jobs being executed. The data values in scrutch items are written by tasks
of a job, read back hy the same or other tasks, and destroyed with the corresponding
structure definitions at the job's termination.

4.8.1 Stiucture Development

The data base must be designed as 3 structure independent of its data content.
The components of the structure are defined to the system with an item-definition r~uuest.
An item-definition request is a zall for the execution of the system job Define-Item.
The parameters of the job are a node specification and an item Image. The node speci-
fication identifies the node in the already existing structure of the data pool at which
the new structure is to be placed. 1t gives the name of a reference item and the new
ftem's relation to it. At {irst, only the statements DATA BASE and WORK AREA can be
affected by an item -definition request. Any definition to be added must be the definition
for a subitem of one of these stateniints; that is, the new item must be a file, statement,
or field which 18 to be subsumed directly by the statement DATA BASE or the statement

e A et B 81y 0

4-30

WORK AREA. Once gorne subitemia of there ~tatements exist in the structure, i new
item may be added a8 a subitem of any statement or record at any level in the data base

Or wWOrk arex,

The item image in an item-definition request r »ntains the name, item type, and
other parameters for the item and each of its compouent iteme. The item image may be
an indented outline, as shown for the I'UNCHASING item in Table 4-1, or a parenthetic

suring.

An item may be deieted from ihe structure by a call tor the execution
of he system job Delete-Defivition. The only parameter of the job is the name of the
node at which the structure is te be deleted. The job eliminates all subitems of th
referenced node and converts the node itself to a null node. A new item may be placed
at the null node by a later item -definition request. If the node itself is to be deleted,
the Delete-Node job is called instead of the Delete-Definition job. The only
way the structure of the data base can be modified is through the use of the system jobs
for item-definition maintenance. The structure of the work area may be modified by
these jobs also: however, work-area structure may also be defined indire~tly. When a
user calls any system or user job which produces an output item, he may request that
a work-area item be automatically generated to serve as the job's output, Ile does this
by supplying a name for the item in the jou request and signalling that the structure is
to be generated as a work-area item. For example, if a user calls the Query job to
retrieve selected items under a given condition, he may have the results stored as a

work-area item. This can be used later as input to some other job,

4,8.2 Data Manipulation

A ~_.los of system maintonance jous gives the user the ability to affect the
data values in items of the data base or work area by commande isaued at a console,
The user may ada or delete specified data values, modify values according to an arith-
metic expression, or update a master file with values from a transaction file.

The item to be affected by the data manipulation job is specifica by naming
the item and providing a condition. The condition specifies the pertinent occurrences
of the item within its parent files. For example, 2 condition nmight be used to fdentify
the purchase orders of a given vendor, so that a data change would be applied only t- them.

4-31

The Renlace Data job replaces the values in the specified data items with
the vaiue of 2 source item. It can replace a field, statement, record, or file with new
values for the itemn and ail its subitems. If the condition specifies more than one eccur-
rence of the items, all occurrences are replaced with the same source value. The Add-
Data job functions the same way, except that the specified items r st be empty (null
value).

The Delete-Data job deletes the values which meet a given cordition. The
job converts all such values to nuil. If no condition is given ¢‘he entire set of values for
the item is deleted.

The Modify-Data iob develops a new value for 2 speceified field, The wew
value is the result of .1 arithmetic expression relating existing values and constants.

This value replaces the value ia all cccurrences of the field which meet the condition.

The Update-Data job updates a master file with values from a transaciion
file. Each record of the transaction file contains a key which identifies a record of the
master file, Other items of the master file are replaced with the valves from the trans-
action file.

4.9 CONDITIONAL RETRIEVAL

The fundamental strategy of DM-1 is to store data so that it is accessible to
meet the information needs of users and programs. These needs are to be met by supply-
ing to the consumer precisely that information which is pertinent and unencumbered by
a context of irrelevant data. The »bility to achieve this goal is provided by the conditional
retrieval facility in concert with the system directoi.es.

In a convuntion:ad svsterw . informetion cmbedded withiin a file can be extracted
by a progran: that contains within itself two kinds of implicit information: the implicit
description o: the file structure und the implicit procedure for discriminating between
relevant and irrelevant data. In DM-1, an explicit description of the entire data pool is
maintained in the system directories; it can be used repeatedly in response to the full
range of information needs. The abstraction of relevant information from a broad con-
text in the data poo! s the function of the system programs for conditionai retrieval.

4-32

4.10 THE ZDialOGUE

A user apnroaching thc DM-1 data pool with an information requirement need
not know the complete specification for the information, The system can help him tn
define the relevant items and the selection criterion through a dialogue procedure. The
user is presented with a succession of multiple choices. Each time he makes a selection,
he is presented with a2 more specific set of choices until he has defined his inlormation
requirement. This dialogue procedure encourages the user to probe the data pool to
discover information relevant to his problem. In this mode of operation, he is in a
position to apply his judgment continuously as he pursues a line of inquiry. The faed-
back at each stage in the process affects both the direction and degree of additional effort
he devotes to the inquiry process.

The dialogue takes place in two phases which correspond ‘o the ‘wo levels of
definition of pertinence for informauiion. In the first phase, the user is asked to choose

the items which define the object, event, or operation about which he needs information.
In the second phase, he is asked to provide criteria which pinpoint the individuals of the

class of items selected in the first phace.

The tree structure of the data pool is the key to the dialogue procedure. When
the inguirer indicates that he wants a dialogue, the system presents him with the names
of the items on the highest level in the structure and asks him to select one for further
probing, These are generic names which segregate the data base into logical groups.
When the user selects an item, he is presented with the names of the items subsumed
by that item, and so on, until he steps to the area of the data base containing the attri-
butes of the obiect in which he is interested. He defines the relevant attributes wii
proceeds to the second phase. The process permits the user to backtrack, correct,
and proceed at any point,

In the second phase, the user is asked to select the properti of the object
of interest which determine the relevant individuals, Each time he gelects an attribute,
hé i asked to choose a value and a relation which defines the property the relevant item
should have. If an attribute {8 indexed, the inquirer is presented possible values in
digestible groups and he choosc the pertinent values. Otherwise, he is given 1n example
of a v Jue and asked to key in the pertinent values. Fach term of the condition is de-
veloped bv this procedure.

4-33

Based on the user's response to the displays, the logical operators relating the
terms of the condition are inserted by the system. The user is guided to narrow the searc
by adding terms until a sufficient condition is developed as a logical product. He is then
given the opportunity to hroaden the condition by supplying alternative properties.

4.10.1 Uses of the Dialogue Procedure

The dialogue proccidure may be used to fulfill a number of information needs
with respect to DM-1. It may be used to support other elements of DM-1 which function
with a condition. The identification of the individual data items to be affected by 2 main-
tenance operation is accomplished with a condition. The selection of data as input to a
job in a job request may alsc be conditional. The dialogue can be used to probe the data
pool to define the precise elements for these conditional operations by developing a

condition with system guidance.

An inquirer who approaches the dialogue with the nced for an answer from the
data pocl elects to go on to a retrieval job after the dialogue. He specifies that the results

are to be displayed to him or printed on hard copy.

A user who wants to perform further analysis on the information he has selected
also selects a retrieval job as the last stage of the dialogue. He provides a name for the
information and requests that the results be stored in the work area for further processing.
ide may specify a structure for the results, or he may accept the structure derived by the
retrieval job from the relationships among the desired items in the data pool. When the
retrieval is finished. the rcwiv c.edtet ' -m is available in the work area. ft may be

bound to any job for further processiug by specifying the user assigned name.

Arother user might have some new data to be added to the data psii, or he
might have some other maintenance operation to perform. If he is uncertain of the pre-
cise nodes in the structure which should be affected by the operation, he may perform
a dialogue. While determining the structure in the pertinent area of the data pool, the
user may develop a condition which defines the precise data he wishes to change. He may
request that the condition be stored with an assigned name. Aiter the dialogue, the user
may call the appropriate maintenance job and refer to the condition by name.

4-34

© a——n AR i ne 9s

These examples show the range of uses for ine diaiogue procedure. Its primary
vaiue is to help the user of the system to formulate a specification of his information
needs. But it may be used for purposes that range from a review of the structure to the

development of .. private file for analysis.

4.11 RESTRUCTURING ITEMS

Restructuring is the process of mapping data from existing structures into an
object structure, under the directions of a specification relating item:, of the object
structure to itcms of the source structure. Restructvres are performed in DM-110r a
number of reasong., Among them are:

(1) To permit data to be collected convenientlv in a form
that is compatible with the source documents. Once

the data is in the data pool, it can be transformed to a
format that is oriented to its consumers.

(2) To adjust to changing usage patterns. The history of
usage for certain items might dictate that they be organ-
ized differently to improve the efficiency of operations,

(8) To prepare data for analysis. A subset of the data pool
may be selected conditionally and formatted into a struc-
ture that is convenient for processing. The resulting
item may be retained in the work area and bound as input
to any job in the library,

(49) To transform ¢ ' _ ‘s mo * *he gtructural requirements of
piograms, Prugrams which were not designed to inter-
face with each other m.y be cumbined in the same job.

An output of one pregram may be bound to an input of an-
other if a restructure program is capable of transforming
the item into the format required by the second progru.n.

(5 To bind existing duta to a job in a job request. This Is
similar to the task-to-task communication situation
presented previously., When a user wishes to run a job,
the data may not be in the appropriate form for the job,
His job request may specify that the data be reconstruc~
ted to put it iuto the appropriate form.

4-35

SECTION V. OPERATIONAL FEATURES

DM-1 is concerned with the management of a large, integrated data pool and
its use in meeting the informstion needs of consumers. The system features associated
with data pool management cannot be divorced from the operational features which pro-
vide the framework Ior interaction between the system and the user. The operational
aspects of the system define the means for the specification of system launguages, the
development of the job library, the binding of data to programs, the management of job
execution, and the servicing of the data needs of programs,

5.1 SYSTEM LANGUAGE SPECIFICATION

The means of communication between DM-1 and the system's users is through
system languages. Descriptive languages specify ituun structures, report formats, pro-
gram parameters, etc. Declarative languages contain the data of the system in externczl
or internal format. Command languages evoke actions by specifying ,obs to be executed
and supplying parameters which affect the execut on.

Each language type must be revognized at the appropriate level in the system
by the appropriate proocessor. The processor must be constructed to respoud to the

D AR, T S

A W A o SIS WA] R i

meaning of the language (cemantics) by performing the apuropriate acticas (pragmatics).
The semantics and pragmatics of the laaguage are cioscly interwoven with tha logic of
the processor. However, just as the Dil-1 apprcaca separuates the format of the data
from the logic of the program, the sysiew separates the languaee coustruction (syntax)

from the logic of its processo,

The syntax of a tystem language may be describer! in . metalanguage similar
to the metalanguage of ALGOL. Thc language description is »-intained by DM-1 in a
table called an action-graph. External languages :;.re processed through the Input Scan
Routine (INSCAN), which uses the action graph to direct the #ow of logic. The external
language may be converted to au internal form or interpreted directly by the execution

of routines at action points in the syntax-directed scan.

5.1.1 The Metalanguage

The mctalanguage is a language for describing the syiiax of languages. DM-1
uses a charting technique to describe the constructi~n ruies for the components of 1
1l The syntactic chart can be converted directly to an action-graph. This ap-
the language processor from the language construction rules. The syntax
may be changed without affecting the logic of the processor. A change

ed by changing the action-graph,

o syntactic chart describes an element of a language by showing the symbols
u w order in which they occur. F.r example, a condition statement consists of
terms connected by AND and OR. A term may be a primitive term, giving an item nane,
a relation and a value, or a smaller condition statement in parentheses, Figure -, (i
is the syntactic chart for a condition statement. The chart says that a condition statement
is a term which may be followed by AND or OR. If the term is followed by AND or O},
the next part of the condition statement must be another term, When a term s not fol-
lowed by AND or OR, the coadition statement it finished.

Figure 5-1 (b} is the syntactic chart for a termi. There are three choices for
a term. It may be a NOT followed by a term; an open parenthesis, followed by a condi-
tion statement, followed by a closed parenthesis; or a primitive term. The action graph
for u primitive term (not shown) would specify an item name, followed by a relational
operator, followed by a value.

[31)
o

S e O g

Term

Condition
Statement

Term

i e e VNI ERE.

AND A

(a) Condition Statement

NOT

N

Term \\
/

.

Conuition
Statement >"")

/

Primitive Y

Term

) Term

Figure 5-1. Syntactic Chart

e S

There are seven shapes used in a syntactic chart. They can be converted
directly to codes in the action-graph table. The chart may include action points which

permit the execution of routines of the language processor in the midst of the scan.,
The Input Scan Routine and the action-graph tables are discussed in detail in Volume II,
Section VIIL

5.1.2 External Definition Languages

The structure of an item may be presented to DM-1 in an indented outline
language or in a parenthetic string. The indeated outline language is illustrated in
Table 4-1. Its syutax is quite simple, and its syntax chart consists of a simple element

with several action points to count the level of inaentation.

The parenthetic string language specifies the structure of ar item in an item
image. The item image uses parentheses to delimit a vtatement and double pareunthcses
to delimit a file. The slash is used to separate items on thc same level in the structure.
Figure 5-2 shows two structure diagrams and taeir corresponding item images. The
first is a statement subsuming two fields, a statement, and another field. Its item image
begins hy giving the statement's name and its types. The rest of the item image, from
the left parenthesis following the S to the last right parenthesis, describes the subitems
of the statement. The field a is described by giving its name, type (1), and size. This
is followed by a slash to signal the existence of another item on the same level. The
field b is described and is followed by a slash., The statement B is described by its name,
type (S), and the subitem description within the parentheses. The specification ends with
the description of field e anu the right parenthesis that closes the statement A. The other
exampie is a file whose subitems are described in the same notation.

Figure 5-3 is a syntactic chart for an item image. It describes an item image
as a name, followed by a comma, followed by a choice i1.r the item type. If the type is a
file, the rest of the item image consists of a left parenthesis, followed by a statement
specification, followed Ly a right parenthesis. If the item is a statement, the rest of the
item image is a statement specification. If the item is a field, a field specification fol- ;
lows. In practice, the syntactic chart would contain references to actions to be taken at ‘
various poiats in the scan. These references call on routines in the language processor !
to be executed when conditions in the input string warrant it. These action points are
not required in Figure 5-3 to specify the syntax of an item image,

8

A, 8(a, 1,3/b,E, 7/B, 8 (c, A, V/d, 1,8)/e, A, 4)

_ —

a, A,V
C
h I, 3
C.I,V

d, E, 4
e, E, V
o e —————

A, F((B,S(a, A, V/C, F((b1,3/c, LV)))/d F,s/¢, E, V))
C

f

B

Figure 5-2, Structure Diagrams with Item Images

\ [

(File;

(--< Statement

—({ Statemert)

(State-
ment)

(NN

(A, B, E,

N/

™~

(Field)

Statement (

_/

(a) Item Image

Image

tem A
1 / /

(b) Statement

Field 1] -C.\/ v
ot

Alphanumeric
3

Integer

(e) Field

Figure 5-3. Syntactic Chart for Item Image

5-8

[P R P

]

language processor. The calling sequence identifies the text to be scanned and the
action-graph to drive INSCAN, Suppose that INSCAN were called to scan the item image
for the second structure of Figure 5-2 with the action-graph derived from the syntactic
chart of Figure 5-3. INSCAN steps over the item image, a character at a time, respond-
ing to the tests specified in the action-graph, The steps of the scan are described below:

(1) A, The first element of the input string is the item
name for the file A, This passes the first test in the
syntactic chart ITEM IMAGE.

(2) . The next test specifies that the character after the
ftem name must be a comma,

5.1.3 Use of INSCAN with an ftem Image
An item image is scanned by INSCAN when the subroutine is called by the
(3) F. Following the comma, the syntactic chart offers
a choice. The character may be an F, or § or one of
the field types. In this case, it is an F, which indicates }
that the item is a file. The other choices are not tried, g
and the scan continues with the box following the teet for F.
(9 (. When the item type is F (file), the next character must
be a left parenthesis, The structure oi the records of the
file will be specified by tie statement image contained be-
tween this parenthesis and the closing parenthesis of the
entire ilem image. This structure is specified by the
characters:

(B,S(a, A, V/C, F((b,1,3/¢,1,V)))/d, E,4/e, E, V)

This is a statement and the ITXM IMAGE chart specifies
that the STATEMENT chart should be uscd to scan it.,
INSCAl saves a return point to the ITEM IMAGE chart

in a return address list and control passes to the STATE-
MENT chart.

(6) (. This is the left parenthesie of a statement (or record).
is detected in the first test in the STATEMENT chart.

The statement (or record) coasists of a series of subitems
separated Ly slashes., Each subitem is itself an item tmage,
The STATLMENT chart uses the ITEM IMAGE chart to
scan each i*m. Wien uu [TEM IMAGE chart is called,
INSCAN pushas down the return address list, saves the re-
turn po'at to the ST . eMENT chart and control passen to
the ITEM IMAGE chart to scan the first item in th> statement:

B,»S’(a, A. V/C'. F“bv l, 3/3' Iov)))

Each time INSCAN reveris to another chart (acticu-graph),
the return sddress list is pushed down. The original chort,

5-17

™

(8)

©)

(10)

3
ITEM IMAGE, was scanned on level §. The STATE-
MENT chart was scanned on level 1. This call to the
ITEM IMAGE chart places the scan on level 2. The
levels continue to increase until a chart exits. Then
the level is decreased by one and control passes to
the return point on the chart which called the exiting
chart, When the level is # and a chart exits, the scan
is completed.

B,S. These characters are scanned by the ITEM IMAGE
Eﬂfrt on level 2. Since a choice exists for the type (F or
S or f), the routine finds a match with 8 after failing the
test for F. Since the item is a statement, the ITEM

IMAGE chart calls for the STATEMENT chart on level 3. ‘ !

(. The statement begins with a left parenthesis. The
STATEMENT chart then calls the ITEM IMAGE chart on
level 4 to scan the first subitem of the statement:

a, A,V

a,A. These characters vre scanned with the ITEM
IMAGE chart on level 4. When the first two tests for type
fail, the test for a field i3 applied. A is one of the valid
field types so the test succeeds. Control passes to the
FIELD chart on level 5,

V. The comma is the first character after the type on
hleld specification, is is followed by a choice of V
or an integer specifying the size of the field. V stands
for varial.le length,

The next element of a field specification is a commaz 1f

a unit designator is given. Sinne the next character in

the input string is a slash, no unit specification is given.
The FIELD chart exits bringing the level up from 5 to 4.
The return point is to the ITEM IMAGE chart at the point
after the call for the FIELD chart. Since the ITEM IMAGE
chart has now scanned the ¢ 'mplete item image for the
fleld:

8,A,V

This chart also terminates, It was on level 4 so the level
{s decreased to 3 and control passes to the STATEMENT
chart at the point after its call for the ITEM IMAGE chart,

[+ The complrtion of the ITEM IMAGE scan for the first
subitem of the stutement B places the STATEMENT scan
on level 3 where it beganin atep (7). After any subitem, |
there may be anolher subitem or the end of the stu‘ement.
This is the reason for the choice between / and) as the

PRI M St ey i =

(11)

(12)

13

(19

(19

(16)

1n

(18)

next character. Since the. . s another subitem in the
statement B, the slash is detected and the chart trans-
fers on the same level to the call on the ITEM IMAGE
chart to scan the next subitem on level 4.

C,F(. These characters are scanned with the ITEM

GE chart on level 4, Because the item is a file,
the first parenthesis is checked and the STATEMENT
chart is called on level 5 to scan the subitems of the
records of the file.

(. The lefi parenthesis begins the record specification.
The ITEM IMAGE chart ‘s called on level 6 to scan the
first subitem of the record.

b,1,3. These characters are scanned with the ITEM
IMAGE chart on level 6 and the FIELD chart on level 7
in the same way as the previous field was scanned.
When the field specification is passed, control returns
to the STATEMENT chart to complete the scan of the

_record's subitems begun in step (12).

/. The statement chart detects the slash and calls the
ITEM IMAGE chart to scan the next subitem on level 6.

¢,], V. These characters are scanned with the ITEM
IMAGE chart and the FIELD chart. When the scan is
completed, control returns to the STATEMENT chart
on level 5.

). The right parenthesis marks the end of the record
structure for file C. The STATEMENT chart exits to
the ITEM IMAGE churt on level 4, It returns to the point
behind the call on the STATEMENT chart to scan the
record of file B, Thi:, continues the ITEM IMAGE scan
begun in step (11).

. This parenthesis marks the end of the item image
or file B. It is detected with the ITEM IMAGE chart
which exits to the STATEMENT chart on level 3, This

continues the STATEMENT sca: begun in sep (7).

1+ This parenthesis marks the end of the atatement B.
he STATEMENT chart returns to the ITEM IMAGE
chart on level 2. Since this is the end of the item image
for the statement B, the ITEM IMAGE chart exits to the
STATEMENT charT'on level 1. This continues the scan
of the subitems of the record of file A begun in step (5).

(199 /. The slash means that another subitem follows, so
the STATEMENT chart calls the ITEM IMAGE chart
on level 2 to scan the next subitem.

(20) d,E,4, These characters are scanned by the ITEM
IMAGE chart on level 2 and the FIELD chart on level 3.
When the scan is completed, control returns to the
STATEMENT chart on level 1.

@1y / V. The slash is detected by the STATEMENT
cﬁrt. It calls the ITEM IMAGE chart to scan the field
specification. Control passes back to the STATEMENT
chart on level i after the Iield is scanned.

(22)). The right parenthesis (next to last in the string)
marks the end of the record of file A. The STATEMENT
chart has completed the scan begun in step (5). It exits
to the ITEM IM AGE scan which continues the scan of
the file A begun in Step (1).

(23) . The final character of the item image for file A is
e right parenthesis. It is detected with the ITEM
IMAGE chart on level §. When this chart exits, the
scan is completed because it was the language proc-
essor which requested the scan of the item image for
file A rather than another chart. The routine exits to
the processor.

5.1.4 Data e

The External Data Language (EDL) is the form in which dzta values may be
presented on-line to DM-1 to be mapped into the data pool, under the control of the
structure specification in the system directories. An off-line data entry mechanism is
also provided to preprocess data into the Internal Data Language (IDL).

The off-line mechanism processes punched cards containing item definitions
and data values in an external language. It converts the definitions into a directory and
the data into the s. Zmented stream of bits used internally by DM-1. These elements
can be merged into the data pool through an IDL Data Entry job.

Data may be entered directly at the consoi or on punched cards or paper tape
in the External Data Language., This is a punctuated string of field values in an alpha-
numeric code. The values are presen.. to the system in the order of the ocourrenoe
of the fields ond {iles in the itemn definition, The presence of a statement in the item

5-10

definition has no effect on the order of presentation of items or the punctuation of the

data string. The data string contains values for fields and files, with a slash between
each value.

A field value is an alphanumeric string of characters consistent with the defini-
tion for the field. For example, an integer is presented as a string of decimal digits; an
. exponential field is presented as decimal digits with a decimal point and a scale factor,

' if requireq; an aiphanumeric field is presented as a string of alphanumeric characters;
etc. The length of the value string must be consistent with the definition, A value for &
variable length field may be arbitrarily long., A value for a fixed lengta field may nov
exceed the length specified in the field's definition.

A file value consists of a series of record values which, in turn, consist of
a string of field values and embedded file values. A file value is bounded by parentheses
and the data string for each record is delimited by parentheses.

At any point in a data string, the name of the following item may be inserted.
A name is signalled by an asterisk. The name forces the EDL proceasor to position
itself to the specified item. There are three reasons for inserting the name of an iiem
in the data string. First, it supplies redundancy so that the entire string is not lost if
the data coder skips a value or gives too many values in a part of the string. Second,
the name permits the coder to skip a series of items for which he has no values. All
items between the one corresponding to the last value and the named item are set to
null by the EDL processor. Third, it is used to unnounce a value for an optional item.

Any opticnal item is presumed missing unless its name appears ahead of the value for
the item.

The EDL data string contains a value for a statement, file, or field that is
consistent with the syntax shown in the chart in Figure 5-4. A statement value is a string
zf field values and file values for the subitems of the statement, with no delimiters sur-
. rounding the statement. A file value begins with a double left parenthesis, ((, one to
, open the file and one to open the first record. The boundary between records is marked
by a right parenthecis and a le.” parenthesis,) (, one to close the previcus record and
the other to open the next record. The end of the file is marked by a double right paren-

thesis,)), which closes the last record and the file, respectively. U the data string
contains only a field value, no delimiters are used.

WEYD OoPPEIAS TAT Y-S 2InBid

a

o

ang

AqYL

801D

0I009Y
aaqouy

edaxq

PIdYd e
rovaixg ’l%ﬂag
\ 1

pI00dY
JO pug oL Bujng
uojlisod

MPA V
aquz ol P)
aaedaag

wd)] paureN
0} uonisod

4N
]

EXAMPLE —

File A

(1

@

An item image for file A of Figure 5-2 is repeated below with a possible data
string as an example. The steps taken by the Input Scan Routine in interpreting the data

string with the syntactic chart of Figur: 5-4 are then ; ‘esented. The notation Va is used
to represent a value for the field named a.

Item Imagz:

A, F((B,5(a2,A,V/C,F((b,],3/c,I,V)))/d,E,4/e,E, V))

Data String:
Record 1
Record 2

Record 3
Record 4

File C
Statement B
File A

((Va/((Vb/Ve) (Vb/Vc) (Vb/Vc))/Vd/Ve)
(Va/({Vb/Vc) (Vb/Vc))/*d, Vd/Ve)

(*C, ((Vb/Vc) (Vb/Vc) (Vb V) (Vb/ Vo))
(Ve/*e, Ve))

{(. The syntactic chart in Figure 5-4 is supplied to
the INSCAN Routine (level @) by the EDL processor.
A data string may begin with an asterisk, a double left
parenthesis, or a tield value, The double left paren-
thesis is encountered in this exa »le, and INSCAN
executes the processor's routine which prepares for a
file. This is an example of an action in the midst of a
syntactic chart (or action-graph). The STRING chart E

is called on level 1 to interpret the string for the first
record of file A,

Va/. The first thing encountered with the STRING
chart on level 1 is a value for the field A, A processor
action is executed to extract the value. Since the value [~
is followed by a slash, the scan transfers to the stort ' 1
of the chart, which is still on level 1.

({ An embedded file (file C) is entered in the first
record of file A, The STRING chart is called on level 2
to scan the string for the first record of file C.

Vb/Vc. The value for field b is scanned and extracted.

Since a slasal [ollows, there is another item in the string
and the scan transfere to the start of the chart, which is
still on level 2, The value for field c is extracted. Since

()

(6)

M

®)

©)

(10)

11

the next character is n it a slash, there are no more
items in the string on level 2 (the first record of file c).
The STRING chart exits to level 1, and control is piczed
up at the point after the call to the STRING chart. An
action is performed in the processor to ensure that all
subitems of the record have been received. I any are
missing, the processor fills out the record with null
values.

) (- Tte right parenthesis marks the end of the first
Tecord of the embedded file ¢ within the first record of

file A, Following a recurd end, a choice exists. The

next character might signal the beginning of another record
or the end of file. In this case, the left parentheris rig-
nals the beginning of another record. The STRING chart

is called on level 2 to scan the second record of file Ge

Vb/Vc) (Vb/Ve. The second and third records of file [o}
are scanned like the first record.

). The double right parenthesis marks the end of the
embedded file C i the first record of file A. The proc-
essor performs the actions required to close the file

and transfers to point D on the chari to check for a slash,

/Vd[Ve. These field values are scanned on level 1 and
extracted. :

) (- The right parenthesis marks the end of the first
récord of file A and the left parenthesis signals the be-
ginning of anofher record. These are detected on level §
and the STRING chart is called on level 1 to scan the
string for the second record of file A,

V%Z%!Q/Vc) (Vb/Vq))/. The values for the field a and the
ile C are scanned and acted upon as before. The slash

signals that another iter: exists on level 1.

*dl VdéVe). The asterisk is detected by the first choice at
point A on 'he STRING chart, It signifies that s item name
follows. The processor steps to the named item, In this
case, it is already at the named item, so the name perves
only as a check. The value for fields d and e are scanned
and extracted, The chart exits to level § when no slash is
found after the value for field e. The right parenthesis is
detected by the chart on level #, marking the end of the
second record of file A,

sk PR pb ek

‘i

(12) (*C(Va/Vb)(Va/Vb)(Va/Vb)(Va/Vh))). The left parenthesis
marks the géﬁﬁng of E'-J gﬁ? record of file A. The level
g chart calls the STRING chart on level 1 to scan the record
value. The name C is the first element in the data string.

In positioning to the item C in the definition, the processor
inserts a null value for the field A, since that item is skipped
in the data string. The value of file C is scanned and extrac-
ted as before. The first two right pa.rentheses in the triple
mark the end of the embedded file C. Since no slash follows,
the chart exits to level § again. Values for fields d and e
were skipped in this third record of file A, This {s shown

by the third parenthesis following the close of file C. The
processor action fil's ont the record with null values.

(13) (Va/'*e,Vc). The fourth record of file A does not contain
3 value for file C. In posiiioning fo the named item e,
the processor action will mark the file null (no records).

(14). The final right parenthesis marks the end of file A.
The chart exits on level f. Tontrol is returned to the EDL
processor, where a check is made to ensure that the entire
item was filled out with values.

5.1.5 The Job Request Language

A user controle the work performed by DM-1 by job-run requests in the Job
Request Language. He may request the execution of any system or user job in the
library by typing a raquest at the console. The Job Request Language provides a broad
spectrum of ilexibility by permitting simple requests counsisting of a job name, or com-
plex requests containing binding specifications for many job parameters with qualifica-~
tions directing conditional selection and restructuring of data items, to be used as job
iRItE.

A job-run regucst is patterned after the job-description image. This consists
of Uz job name followed by a list of the names of the job's [ormal input parameters and
formal output paramezer=. For example, the job-descripthion image of a job which de-
termines the equation of a line from a set of coordinate points mignt be:

REGRESSION points; line

vhere the job's name is REGRESSION, its input paran.eter is a file called potnts and
its output parameteor is a statement called linc which give the coefficients of the line,
When s user wishes o execute the job, he binds the input and cutiil purameters in a
job~run request. He replaces the formal name points {n the job-description image with

5-15

iy sl R

JE N

R MU v e e

the name of a data-pool file containing the coordinate points or with a literal file typed 1
at the console, He also binds the output parameters by replacing the formal name line !
with the name of a statement in the data pool or with a name to be assigued to a work-

area item to be created by the system to accept the job's output. For example,a job-run

request might he:

REGRESSION test data; * failuse line.

whers test data is the name of a file and failure line is a name the user wishes to assign :
to the job's output, which is to be written into the work area of the data pvol. .

- Figure 5-5 is the syntactic chart for the Job Request Language. The chart -
. for a job-run request is given in I'igure 5-5 (a). It specifies that a job-run request

begins with a request header, which identifies the user and is in a common format for

all requests, The rest of the request is the bound job-description image., It consists

of the job name followed by a choice of four components. A semicolon occurs if there

are no input parameters to be bound, or after the last input-parameter binding specifi-

cation. It announces the beginning of a set of output—paramebér binding specifications.

A period occurs after the job name and terminates the request if there are ne parameters
to be hound. If there are parameters, the period follows the last parameter binding
specification, A comma normally separates binding specifications. The appearance of

a comma immediately after the job name implies that the Jot\) has several input param-

eters and that the first parameter will not be specified. In other words, if the comma -
is used, but is not preceded by a parameter specification, the formal parameter in the .
corresponding position in the job-description image is not to be bound for this run. U

none of these punctuytion characters follows the job name, an input-parameter specification

was given. Following the narameter specification or a null input parameter, the chart of

F gure 5-5 transfers to point A to repeat the scan for the next element of the request.

After the last input-puarameter specification, » semicolon signifies the beginning of the

output parameters, or a period specifies that no output parameters are to be hound.

If the semicolon is encountered, the scan passes to point B in the syntactic
chart. A period signifies that no more cutput parameters are to be bound. A comma

specifies a null output parameter, Otherise, an output-parameter specification occurs
at this point in the request. Afer the output parameter on a null specification, the chart
iransfers tc point B to repeat the acan for the aext parameter. After the last parameter

snecifi ~ation, a period marks the end of the request. i

5-16

< Job Run
Request

Nul}

’ p~ Output
Parameter

OQutput
Parameter

{a) Job Run R_e_guest_

Input >_< ‘
Parameter | /

Data
Pool
Name

) Input Parameter

m:>—< v

N New Work
Area Name

Fi’mmk&s. -Jeb-Run Request Syntacti. Chart

/ Oate
Fool
Name

.._./‘

fei ¢ Parametr

5-17

R R e PR

Figure 5-5 (b) is the syntactic chart for an input-parameter binding specifica-
tion. It is referenced hy the chart for a job-run request. A quotation mark signifies
that a literal value for the input parameter is given in the request. The liter:l is ter-
minated by a closing quotation mark. If the specification is followed by a comma, the
character is scauned over before the chart exits. If the input parameter specification
is not a literal, it must be the name of a data-pool item. This may be followed by a
selection specification enclosed in parentheses. A selection specification may contain
a condition which identifies a subset of the named item: as the data to be fed to the job,

It may also contain a reformat specification which specifies that the data shoulc ve fed
to the program under a structure definition that is different from its current definition.

Again, the comma is scanned over if it appears after the input-parameter specification.

The syntactic chart for an output parameter is given in Figure 5-5 (c). An
output parameter is either a data-pool name or an asterisk followed by a user-supplied
name. The latter is a request to the system to define an item in the work area to re-
ceive the output parameter and assign the given name to it. The item can be used later
as input to another job for further processing or display.

5.2 JOB-PARAMETER BINDING

Another of the operational features of DM-1 is its control over the binding of
data items to programs. In a job-run request, a user 3, specify the data to be oper-
ated on by its symbolic name and the system associates the data with the program's input
and output requests. The system alro coordinates the communication of data from one
program to another within the framework of the job.

5.2.1 Programs and Jobs

A job in the DM-1 library may be viewed as a black bov with certain inputs
and certain outputs. Each input and output is a data item with a certain structure. These
are forma: parameters of the job. Each parameter has a name. Parameter names may
be assigned by the programmer when he writes a program and used by him to reference
the parameter in calls to the system. Or, parameter names may be asaigned by a user
when he creates a job from existing componenta.

I, N

When a program is written for DM-1, the programmer assigns formai names to
each of his input and output data items. These formal parameters may have a fixed

5-18

R TR S S

’__’b

..
structure, in a the sense of a specified item definition, or they may have a variablc
struciurs, If the structure is fixed, the program is written assuming that the fixed '
structure exists in the data pool and all calls to the system associated with that dai

item relate implicitly to the fixed structure. If the structure of a parameter is variable,
the program is written to operate with a system-supplied Item List Table for input param-
eters to dete. mine the structure with which it is operating; or, the program must supply
such a table to the system to specify the structure of output parameters. |

After a program is written, it is entered into the DM-1 library by the execu-
tion of the Program Entry job. Each of its formal parameters is described to the system
by an item definition. The system places the program's name and its parameter speci-
fications into the library. This step makes the program a job, Its job-description image
ic the program's name (job name) with the 1ist of formal inpu: and output parameters,
Once the job is in the library it may be used, like any other job, as a component in more ’
complex jobs, as a subroutine called through a job extension from a program, or as a
_ unit of work callable by a user with a job-run request. Effectively, it becomes a black
3 i box with specified formal inputs and formal vutputs which car. be bound to data-pool
S items, to the inputs and outputs of other jobs, or *o data supp'ied by a program in a job

extension,

Figure 5-6 (a) shows two jobs as black boxes., Each has two inputs and two

outputs. As black boxes, they are very similar. However, JOB 1f is a single-task
joo; i.e., it is g program which was entered into the system through the Program Entry
jok. JOB2{ is a multitask job; i.e., it was described to the system with the Job De-
scription job as consisting of a sequence c{ jobs which already existed in the library.
Figure 5-6 (b) shows JOB2# as a sequence of three other jobs; JOB5, JOB1§, and JOB15.
The inputs to JOB2§ are actuslly inputs to its components, and the ovtputs are actually
compeneit outputs. \The inputs and outputs of the individual components arc reiated in !

 a fixed way by the jot‘a description which created JOB2§. Once the job is created, it is
eligible to be calied and executed by a user at a ronsoie o. by a program through a job
extens ‘on. It is also eligible to be a component in another job. (In the sense that a job
mxy be Jefined in terms of jobs, the definition of a job is recursive.) In any of these

. uses, e user may ignore the internal structure of the job description. Only the formal
input and output parameters of the job need be considered. The system takes care of

5-19

"y .

Job 18

= D F —o

Job 24

(a) Two Jobs as Black Boxes

Job 26

- 1 — Job 5 ool (] e

L—A-—-—-—o- : C
B o Job 16 D

K
Job 15 M

 ——

(b) Components of Job 2§

" Figure 5-6. Jobs as Black Boxes

5-30

relating the data items bound to the formal parameters of the job, through an arbitrary
number of levels of indirect references, to the terminal program which actually processes
the data.

5.2,2 Binding Specification

In describing a job as a sequence of existing jobs, the user may assign formal ‘
names to job-input and job-output parameters to be bound when a run request is issued
for the job. He uses these formal job-input names, data-pool names, and formal com-
ponent-output names to define the formal inputs of the component jobs., Similarly, he g
defires the formal outputs of the component jobs by assigning them to data-pool names, |
formal 1nputs of other compenents, or formal outputs of the job.

When a sequence of independent jobs is defined as a new job, the output of one
component of the sequence may be semantically compatible with the input of another
-- --conponent Lut the format requirements may differ. To equate such parameters, the

binding specification contains a reformat clause. The reformat clause specifies a struc-
tural transformation to take place in interpreting the source item as an input to the
second component. When the input requires a subset of the source item, the binding

» specification contains a condition clause. The condition is used to select a subset of
the source item which is to be used as the input item. For example, one component of
a jJob may produce a file containing a record for each employee, Another component
processes similar records for employees in the stock-option plan. A condition may be
used in binding the employee file to the second component, so that only the records for
employees who meet the requirements of the stock-option plan will be fed to the second
component, The reformat clause and the condition clause may be combined in a binding
specification to produce a subset and a structure transformation. !

The same requirements for parameter binding occur in job-run requests. Items !
in the data pool may be bound to formal job inputs with a binding specification that con- ,
tains 1 reformat clause and a condition clause.

6.3 RELATIONSHIP TO THE OPERATING SYSTEM

DM-1 is designed to function in a multiprogrammed environment in conjunction
with an operating system which controls the environment. Wherever possible, the sys-
tem uses the features of the operating system to enhance its performance. However,

5-21

Rl

e e

there are operational features of DM-1 which replace similar features of the operating
system, so that the full range of flexibility and power of DM-1 may be exercised. The
characteristics of the job-run request, the features for the binding of parameters, and

the mechanisms for accessing and storing data symbolically under directorv controi are ;
not accounted for in the features of a general-purpose operating systerm. The following f
summary indicates the features that must be provided by parts of u.e DM-1 system ;
itself;

(1) To provide the ability to respond to job-run requests, ;
the DM-1 Request Processor is required. A user must -
be able to call for the execution of jobs from the DM-1
library, using the data binding features of the system.
Since the maintenance of the structural requirements for
the parameters of programs and jobs is 2 DM-1 feature,
the library is not under the coatrol of the general opera-
ting system.

(20 To provide the flexibility of DM-1 during the execution
of the job, the Job Manager is required. It must operate {
with the output of the Request Processor and monitor the !
loading and - xecucion of each of the programs in the job.
It must respond to program calls to execute other jobs in
the library as subroutines (job extensions).

() To provide data access and storage services to programs
during their operation, the Service Package is required.
It uses the directories and the data binding information
produced by the Request Processor and acts as an inter-
mediary between programs and the data pools.

Several approaches could be taken to accommodate the DM-1 requirements
within the operating system. The two extreme positions help to define the choices open
to the system. At one extreme, the DM-1 system could be organized to function as a job
in an existing operating system. It would appear no different from any other job executed
“nder the operating system's control. At the other extreme, the scope of DM-1 could be
expanded to incorporate all the features of the operating nystem, namely an integrated

bt s

system to control such elements as multiprog.ammed scheduling, device control, and
resource allocation, as well as management of the data pool and job library. :rogram-
ming language processors could be modified to incorporate language elements of the DM-1
system,

5-22

e

o e e

If the DM-1 system is to function as a job under the operating system, all
system facilities must be provided for within the j;ch, The response to a job-run request
could be handled by the first stage of the job, and the appropriate coding to execute the
request could be loaded as overlays or subroutines. However, space would be required
in the memory assigned to the job for the system service routines as well as the code of
the task programs. These routines would be duplicated in every DM-1 lob. This would
severely limit the number of DM-1 jobs which could function together in the time-shared
mode,

If an operating system is developed to include the DM-1 system, the coordi-
nation between the systeme would enhance performance. Tke programming language
processors would contain facilities for calling DM-1 services and operating on structured
items. The scheduling algorithms could taxe advantage of the degree of control exer-
cised by DM-1 over the data. Efficiencies could be introduced bv combining levels of
storage control. However, an operating system and its associated language processors
represent a large investment in design and development. Its valuable features cannot
be discarded lightly.

DM-1 takes a compromise position that i8 based on an evaluation of the planned
implementatiun under the RADC Mobile Wing ECP-1 for the M-1218 computer. The de-
tails of the planned relationship between DM-1 and the operating system are gi.ven in an
appendix in Volume II. DM-1 relates to the operating system in su~h a way that it appears
as an embedded part of the system to a program, while it appears as a job to the opera-
ting system. A request for 2 DM-1 job is issued at a console as data from the viewpoint
of the opexating system. This data is for the DM-1 system which is recogni~ed hy the
opersting system as a single job. The DM-1 Request Processor decodes the request and
the DM-1 Job Manager sup rvises its execution within the coafines of a single operating
system job,

The DM -1 job has a special status within the operating system. Whevever it
is requested, the ope.ating system ensures that the DM-1 Service Package is resident
in mamory before initiai.ng the DM-1 syatem as a job. Since the Servics Package is
reentrant, only one resident copy is needed to serve Liany DM-] programs iaitiated under
separate requests. This artifice permits the system to take advantage of the multi-
programmed environment, without dupdicating ths DM-] servioe routines in every progrim.

The operating system permits programs to call for DM-1 service routines through its
normal executive call with a code £.gnifying the Service Package. It passes controi to
the resident Service Package which decodes the request and responds to it.

The interface between the operating system and DM-1 is a narrow one, which
permits easy transfer of the DM-1 system to another environment with a different opera-
ting system. Improvements or changes in either DM~1 nr the operating system shouid
have little effect on the other system.

5.4 REQUEST PROCESSOR

The DM-~1 Request Processor is initiated by the Job Manager for each user
request for ... DM-1 system. It reads the console message which contains a job-run
request in the Job Request Language. The job-run request contains the name of a job
in the DM-1 ubrary and the binding specifications for the job's input and output param-
eters. The Requzst Processor uses the Input Scan Routine with the action-graph for a
job-run r¢ nuest to decode the message. It uses the job name to locate the job's descrip-
tion in the . -ary. With the description as a guide, the request processor constructs a
request record containing the information needed to execute the sequence of programs
(tasks) that make up the job. This record is written into the request file to be used by
* the Job Manager and Service Package during the execution of the job.

The request record contains the Task List which identifies the sequence of
programs to be executed for the job. I he Task List is derived from :he job description
and the job-run request. It contains identifiers for the :omporent programs of the job
and for any implied tasks needed to achieve the conditional refdrmatting of parameters
specified in the job-run request.

The Task List is a file embedded in the request record. Each record of the
Task List contains two parameter binding files, one for the task's input parameters and
ope for its output parameters. The records of the parameter binding files are equations
relating the formal parameter names used by the program in o‘e_i-vioe callg to the data-
pool identificrs of the actual data tound to the program for the run.

65.4.1 Request Translation

‘ Figure 5-7 is a schematic diagram of the steps tabrp by the Request Processor
in transisting the job-run request into the intsrnal request record. The user begins the

5-24

et a5 - ot e Vo ©

User
Console
l_ -Ee;;e.s—t— Pr;e;on
I |
Action Request |
Graph ‘ Scan

Job Parameter

Deucription l Bindiug
I
I
L] Task List
| Generation
I o
R

Request
Record

(Task List)

Figure 5-7. Reguest Trans!ation

5-25

Decoded

Run Request

Parameter
Binding
Specificationy

N i RGN

e e e it s e

process by developing a job-run requeét at the console ard signaling the operating system

that a DM-1 job is to be executed. The operating sysiem schedules the Job Manager,
assigns memory to it, and loads it. A standard set of tasks for the Request Processor
is execvted by the job Manager. The Reque-. Prccessor reads the job-run request
through an opcrating system service. I retr.c-e¢s the action-graph for the Job Request
Languzze and uses the Input Scan Routine to scan the request, check its syntax, and de-
code it into an internal form. The decoded run request and the job description from the
library are used in binding each of the job's input, output, and intermediate data param-
eters. Each parameter is assizned an IPC in the structure. Any imp'ied tasks needed
to reformat 1tems or selsct ddta subsets conditionally are scheduled for inclusion in the
Task List. These implied task requirements and the IPC's assigned t0 the job's par-
ameters are stored in the parameter binding specification. This is an input to the last
step of che process, the generation of the Task List for the requested job. The Task
List, which contains one record for each task, is written into z record of the request
file, A binding record for each of the task’s input and output parameters is written into
the input or output binding file, which is embedded in the Task List reccrd for the task.
The binding recor.’s equate the formal parameter name to the IPC of the data item bound
to it.

The information derivec by the Request Processor about the job is written as

a record of the request file to segre -ate one "request from another. In a multiprogrammed

environment, many independenri requests may be active at once. Each active request is
assigned a differeat record number in the request file. This number is used internally
to identify the request for its duration.

5.4.2 Job Extension

A job extension is a request by an oper=ating program for the exerution of a job
from the library. The program may execute the job as a subroutine, with control being
returned to the calling program at the completion of the extended job, or it may request
the job extension at its tern.ization.

The same parameter binding powers may be exercised by a program in a job-
extension request as bv 1 user in 3 job-run request issued at a console, The calling
program binds data-pool iter:s to the job's input and output parameters by using any

o= T olos o P meran. : e e

aon——

convenient item identifiers: data-pool names, formal parameters names, ‘emporary
item names, or IPC's. The job-extznsion request inay specify structural changes in
the items and conditional selections.

e et o o Am— T—r

The Request Processor reeponds to job-extension requests just as it responds |
to job-run reqv,x'esta that are initiated at the console. After the initial response hy a
resident portion of the Job Manager, a scan of the job-extension request is performed
by a routine of the Request Processor to produce a decoded run request that is identical
to that produced for requests issued from the console. The parameter binding and Task
List geperation steps of the Request Processor operate on the decoucd run request and
produce a request record containing the Task List for the extension jou. This job ia
then executed normally. When it is finished, the program that called it receives

coutrol at the point after the call, unless the job extension was calica at the program's
termination.

5.4.3 The Request Record

For each job-run request and job-extension request, the Request Processor
develops a request iecord containing the information needed by the system during the
job's execution. The key components of a request record are shown in Table 5-1.

TABLE 5-1. STRUCTURE OF THE REQUEST FILE

RLQUEST FILE, F
PARENT TASK,H,V
DUMP DATA,*,S
DUMP ID,0,4
RETURN ADDRESS, I, 12
TASK LIST, F
TYPE,B,3
TYPE ID,0,4
FLOATS, 1,3
INPUTS, F
FORMAIL NAME, A,V
TiPE.B,3
IPC,H,V
OUTPUTS, F :
FORMAL NAME, A,V
TYPE,B,3
iPC.H,V

5-27

The request record for an extensior. job contains the identification of the task
which called it in the fleld “ARENT TASK. The value of thie field is two record numbers,
the number of the request record for the j' and the number of the Task List record for
the task which issued the job extenrion. The DUMP DATA statement specifies the loca-
tion in auxiliary storage and the return adaress of the shelved task if it was rolled-out
to accomimodate the job extension. For console-initiated requests, the request record
contains a null DUMP DATA statement.

The Task List coniains one record for each task in the requested job. The
fields in the Task List record identify the oi)ject code for a program and specify its loca-
tion in auxiliary storage. They are used by the Job Manager to load and initiate the task.
The files for inputs and outputs contain equations relating the formal names of the pro-
gram's parameters to the IPC's of the data-pool items bound to those parameters. They
are used by the Service Package routines to interpret input-cutput requests issued by the
program,

5.5 JOB MANAGER

The Job Manager is a set of system operations which coordinate the flow of
control among programs. It consists of four elcments which mansge the transition of
control a..ong tasks, the operating system, and the Request Processor. The set of
transitions accomplished through elements of the Job Manager is shown in Figure 5-8.

(1) When the user requests a DM-1 job, the operating
system loads the Request Bootstrap of the Job Manager.
This element accomplishes the first transition — be-
tween the operating system and the Request Processor.
‘The Request Bootsirap program assigns a reuest record
number for the request, preparea some parts of the
record, and initiates the Request Processor.

(3 After the Request Processor digests the request and
builds the request record, it calls the Task Terminate
routine of the Job Manager. This element accomplishes
the second transition — between the Request Processor
and the firat task of the requested job. It reads the first
record of the Task List, determines the location of the
object code, and loads the task and executes it,

(3 Each time a task of the job completes its operation, it
calls the Task Terminate rout'ne. In this case, the
Task Terminate routine acoomplishes the third transi-
tion — bstween a task and the next task in the job. It
reads the next record of the Task List to locate and
load the next task.

5-28

e o A s o cv—— ¢ ot o

THROUGH JOB
TRANSITION FROM [MANAGER ELEMENTS TO
Ornerating Request Request
System Bootstrap Processor
R Roquest Task |/ First Task \
Processor Terminate | Of Job
@ Any Task) Tek | /" Next Tagk)
Of Job, erminawe ! _ Uf Job
Any Task Job
Of Job / Extension
: Request Request
Bootstrap Processor
Last Task Task
of JX Job Terminate
Re, ast Task Of
Termirate Calling Job
/" Last Tack \ Task
‘ \ ofCliob / Terminate
Requast Operating
Terminate System

Figure 5-8. Transitions Controlled by the Job Manager

5-29

4

&)

(6

Any task in a job may execute a job in the DM-1 library
as a subroutine or at its termination. The task calls

the Job Extension routine of the Job Manager. This
element housekeeps for a job extension, rolls out the
requesting task, if necessary, and passes contrel to

the Request Bootstrap, which prepares a request record.
It assigns a request record numbes, records the identity
of the calling task in the request record for the extension
job, and initiates the Request Processor. The Job Fx-
tension Iloutine and the Request Bootstrap function to-
gether to accomplish the fourth transition — between any
task which ieeues a job extension and the Request Proc-
essor which prepares the extension job for execution.
Transition from the Request Processor to the first task
of the extension job and the task-to-task transitions
within the extension job are accomplished by the Task
Terminate routine as shown for the second and third
transitions in Figure 5-8,

When the last task of an extension job terminates, the

Job Maiager returns control to the appropriate task

of the job which requested the job extension. The Task
Terminate routine functions as always, by reading the
next record of the Task List and executing the task
identified by that record. The last record of every Task
List produced by the Request Processor calls for the
execution of the Request Terminate task of the Job Man-
ager. This element accomplishes the fifth transition of
Figure 5-8 — between a completed job extension and the
appropriate task of the job which requested the job ex-
tension. The Request Terminate task reads the request
record fc- the terminating job and d letes the request
record and-any scratch data developed by the job. If the
task which requested the job extension was rolled out, its
location is given in the DUMP DATA statement in the re-
quest record. The Request Terminate task rolls the shelved
task back into memory and returns coatrol to the return
address of the task. Otherwise, it calls the Task Termin-
ate routine with parameters set to return control to the task
following the task which issued the job extension.

When the last task of a cansole-initiated job terminates, the
Job Manager returns control to the operating system. The
Task Terminate routine ioads and exscutes the Request
Terminate task. This element accomplishes the sixth trans-
ition — between the laat task of a console-initiated job and
the operaling system. The Request Terminate task deletes
the request record and any scratch data developed by the jcb.
Since there ia no reference in the request record to a parent
tas«, control is returned to the operating svatem.

5-30

P

R s s e o i £ st b s+
. ?;‘_L
N 5.6 SERVIZE PACKAGE
‘ One other operational fekature of DM-1 is the set of routines which perform
- input-cutput services for programs running as parts of jobs from the DM -1 L'hrary.

These and a resident interpreter constitute the Service Package. The Service Package
Interpreter occupies a reserved area of memory with some group of service routines
whenever any DM-1 job is in progress. The same copy of the Service Pack:e serves
any number of DM-1 jobs in the time-shared environment.

The operating system ensures that the Service Package 15 'n memoy, when a

DM-1 job is requested. Any DM-1 system element or task pr¢ ram can call on the
service routines to retrieve or store data in the data pool. A call to a Sérvice Package

o routine is issued through the operating system. The program identifies the desired

N routine by a code selected from a block of codes assigned to DM-1 Ly the overating sys-

tem. When the operating system is entered with any code from the DM-1 block, it
passes control to the Service Package Interpreter, which dstermines the routine re-
quested. I the routine is currently in memory, the Interpreter passes control to it.
Otherwise, the requested routine is loaded from auxiliary storage, replacing an inactive
routine of the Service Package.

To provide service 1. many progra.—~= with one copy of ihe Service Package,
the services are performed by reenirant routines. A given routine can begin serving
other programs while it is still working on earlier requests. For example, #f a routine
is interrupted while working for program A, the operating -ystem's switching algorithm

-may give coatrol to program B. Prograin B may call for the same scrvice routine and
the same oopy of the routine will be cxecuted. If another interrupt occu=s, the routine
may be restarted in its work for program A. Conflicts are avolded in serving several
programs by keeping all parareters of the service routines in the memory of the pro-
grams requesting servico. 1he sorvice routines never modify their own area of memory.
All medifications are made in the memory of the caller through index registers, which
are suved and estored by the operating system with each interruption of the Service
Package.

~ The input-output services periormed by the Service Package routines trans-
mt:dmm:pmm'-wﬁarandthoumenmddm-mngufthedmm. The
progrmmdnotbeoommdwmumfieldatmcmmofthedautnthedan:mam.

.
,,/mwm"-nﬂsmgm oo AR T e AT e

§-31

They specify the format they want in their buffer and the service routines put the data
into that format. The program must be aware of the hierarchical relationships amcng‘
the items it reads and writes. However, discrepancies between the program's assump-~
tions and the actual structure in the data pool can be sccommodated by reformat speoifi-
cation in binding data-pool items to the prograr's paraineters.

The programmer's view of the Service Package and a description of the iaput-
output services provided are given in Section VIII.

T L Y SRR N

PO)

SECTION VI. DATA-POOL MANAGEMENT

The transition from magnetic-tape-oriented data processing installations to
random-access mass-storage systems has already created the need for an administrator
who can arbitrate among users with conflicting interests concerning the best use of on-line
mass storage. Multiprogramming and time sharing have added data security and user
priority to the administrator's scope of responsibility. The control of file names and
program names across separate groups of users is not new. Operating systems have
provided a wide range of services to aid the administrator who desires to make the most
effective use of a computer center.

Data Management systems add a whole new dimension to ths administrator's
possibilities for greater efficiency. If the traditional separation of users, programmers,
and operations is maintained, a data management system will just increase overhead costs.
If the data pool is merely a ocollection of files and programs designed by autonomous
groups, the potential of the new system will not be reslised.

R O

oA e YR S

The Data Adminisi. ator's role can best be described by categorizing several
time pertiods in the life of a project.

61

(1) Dats collecting, data structure planning, and program/
job preparation.

(2 Preparation for running the job on the computer.

(3) Measuring performance and making modifications
to improve efficiency.

This section will describe the administrator's functions through these various
time periods with the emphasis on data. Section VII will cover programs and jots from
preparation, through library storage, and on to execution.

6.1 DATA INDEPENDENCE

The biggest challenge offered by DM-1 ic the opportunity to remove data struc-
turing from the narrow purview of the departmental analyst whose only concern has heen
the efficiency of his application. I the data is susceptible to multiple usage, the data
administrator can structure it without affecting departmental applications. Programs
can be designed with optimum data structures assumed, and if the data in the data pool
is arranged differently, the data management system can structur2 it automatically when
the user job is run.

A series of Data Pool Maintenance Jobs is available to the Data Administrator
for data structuring and the establishment of the data base.

6.2 -DIRECTORY MANIPULATION

The system jobs concerned with directory manipulation provide the Data Ad-
ministrator with a data-description language for specifying and altering the logical struc-
ture of the data base. The physical handling of the data is separated from the definition of
its logical structure. In fact, data cannot be added until the system directoriea contain
the data description.

Paragraph 4. 1 describes the various item types (files, statements, etc.) and
how they can be arranged into logical structures. When an initial structure hss been
decided upon, this definition is submitted to DM-1 as input to the Define-Rem job. As a
result of the exscution of this job, the term names for the new items are inserted into the
Term Encoding Table and Term List, and thc item types and sizes are stored in their
proper logical position in the em List,

6-3

g

Two spé‘ciﬂc system control functions should be considered at this time.
Security restrictions on reading or writing classes of data can be enforced most effi-
ciently if items are properly classified as they are def ned. For example, if an em-
ployee rating file is never to be read except by the Personnel Manager, the file and its
sub-items should be given a Security Restriction Level (SRL) code high enough to auto-
matically prevent most users from seeing the data.

Problems crused by unintentionally duplicating item names will not arise if
new item definitions are checked against a current Term Encoding Table list before the
Define-Iten: job is run.

Indexing of fields should be under the Data Administrator's control. When a
field i indexed, random retrieval is quicker, but mass-storage space is reduced be-
cause additional directories are required to provide the rapid access.

After the initial choices are made, the Index job is executed and the additional
directory tables are constructed. If space becomes a problem, the Remove-Index job
can be used to undo the indexing and release the space. There are options within the
Index job itself which can be used. Indexing all field values (mode ALL) is most expen-
sive. Perhaps only partial indexing through ithe LIST or RANGE options will provide a

P better balance between space and time.

Logical relationships between items in separate structures are defined through
the Link job. Through linkage, it is possible to define several logical structures without
the need to duplicate physical data. Since the Data Administrator will see all item defin-
itions, he has the opportunity to consider:

(i) Separating the structures so that the background or

reference data will be available, when called for,
but will not encumber the high activity data.

(@ Duplicating the data, with its cost In space and main-
tenance versus nonduplication with its slowsr retrieval.

The initial choiocs are not criticsl because links cun be remnoved by the Delets-
Link job followed by a Define-Item job to add the item to the source etructure.

i i s e O o r

Structures from which logically related data is ~emoved get a source link
defined through the Link job. The source link points to the target structure where the
logically related data is stored. In the target structure a target link is inserted to
identify the ftems which are logically related to the source items. These links are |
unidirectional; in proceeding down through a structure, a source link can cause branching
to a new structure, but a target link is ignored.

6.3 DATA MANIPULATION P

After an initial data structure has been defined to the system, data may be °f
added to the data base. The Add-Data job will accept a srmall volume of data directly
from the console. Large volumes of external (foreign) data are iranslated through an
External-to-Internal Conv2rsion job before Add-Data is exccuted.

Since most data is characterized by a rapid rate of change, there ir a series
of maintenance jobs to accomplish data deletion, data replacements, and selective ex-
plicitly stated modifications. The query capability and the random-access masa storage
suggest that data changes should be input as they are received. The Replace-Data and
Modify-Data jobs are designed for on-line maintenance. For the more traditional batch
processing, the Update-Data job will apply a whole series of transactiona to a file in
one job run. ’ *

For files containing indexed fields, the Data-Delete job removes records by
setting each of the subitems to a null state. This allows records to retain their original
record numbers and thus the effect on the index tables in the directory is minimized.
After a file has had a large number of such deietions, the File-Compress job can bt used
to adjust ail the record numbers at one time and re-establish a contiguous set,

Ther= 18 no aingle system job which will rearrange data to fit a change in the
item dafinition. When the Data Administrator decides to redefine a structure, he first
executes the R ‘furmat job. Reformat will restructure the data in acvordance with the
specifications given, and temporarily file the data in the working ares of the data pool.

Then the structure iz redafined using the proper directory manipulation jobs. These .

! : jobs automatically deleis data-base data when structural changes sre about to be made.
"' | After he is satisfied with the definition, the Dats Administrator uses the Add-Data job
to return the restructured data to the dats base.

6-4

If this combination of system jobs becomes a common occurrence, the com-
bination can be entered as a single job through the use of the Joh Description job (see
Section VIN).

6.4 PREPARATION FOR USERS

] All of the directory and data manipulation described in the preceding para-
I graphs should be considered as prejaratory. The purpose is to make the data available
] for use. Before z user cau run a job to interrogate the data, or read it for the purpose

- of performing computations, the user must be ideutified to the data management system.

The Add-User job has as its input user name, priority, and clearance levels.
A Clearance Level (CL) is a code related to The Security Restriction Leval (SRL) which
has been assigned to the data cla.s (3ee Paragraph 6.2). If the user's CL code is higher
than the data's SRL code, the user may have free access to the data. The data adminis-
trator protects large portions of the data pool from unauthorized access or modification
by careful assignment of users' CL codes.

When the relationship between data SRL codes and user CL codes is not pre-
cise enough, there is a second level of protection which can be used. Using the employee
. rating file as an example, the data may have been given a SRL code of 5, and the Per-
sonnel Manager a CL code of 6. Now, the manager of accounting may have been glven
a CL code of 6 so that he can gain access to certain data which he needs in order to per-
form his job. This CL code of 6 would allow the accounting man to see the employee
rating file i{ no other protection scheme was available.

The Data Administrator can reduce the Clearance Level for bath of these men
to code 5 through the Delete-Usex job followed by the Add-User job. This makes the
employee rating file and the acoounting file unavailable to either manager. Then through
the Add-Aoccess-Rights job, the proper data is made available to the proper man by ex-

plicitly stating, in the Access Rights table of the directory, which data esch man may

~ The writing or modification of data is controlled through parallel procedures
to those described for acoess. | "

i

6-5

O i e et

6.5 USAGE STATISTICS

After the data has been define., added to the data base, and used for a period
of time, the Data Administrator can begin to measure the performance of the sysiem.
DM-1 accumulates data-usage statistics in three separate areas to assist the Data Ad-
ministrator in planning modifications to improve efficiency.

In the Segment Name List, a count is recorded to show how many times each
segment of the data pool has been accessed. When hierarchies of secondary s.orage are
provided, this count will guide the operating system in determining what level of physical
storage should be used. Data base segments with counts above or below average will
indicate where structural changes should be made to make active data mcre easily re-

' trieved, and to delete inactive data as mass storage becomes full.

Since the directory segments are also identified ir the Segment Name List,
the ratios between directory and data accesses will provide interesting statistics for
use in upgrading the system after usage patterns have been established.

The other two areas where tallier are maintained are special purpose; they
meszsure the usage of index and linkage tables. Based on the 1'ates of usage, the Data
Administrator can modify his original decisions on what fields to index and what data
to link, ’

There is a record in the FIFLDS file for each indexed field. When queries or
conditionsl searches are executed, this record is accessed en route to the FVT file,
The tally in this record will indicate whether or not a field deserves to be indexed. Lm-
bedded in the same record is the FVT file which lists all of the field values by which the
field is currently indexed. For each of these explicit values, there is a second tally.
These minor tallies will suggest changes in the indexing ¢ ption (ALL, LIST, >r RANGE)
whick may reduoe index table size without reducing acoess speed.

There is a record in the Linkage Table for each source- and target-link item.
In the recovds for source links, there is a usage count which will show how often users,
in veading through source data, have retrieved the target data via the source-to-target
ifak., A very large count might suggest duplication of data in the source structure.

6.8

B

A very small count might indicate that the data relationsaip established by the link is an
artificial one and that the link could be removed without loss.

Inftially, the system will produce these usage statistics and depend on the
Data Administrator to analyze them and make any suggested modifications by executing
the appropriate Data-Pocl Maintenance job. Ultimately, the system may be instructed
0 perform the analysis and modify itself automatically.

The current system deaign .oes not include usage statistics in the User
Acoses/Modification Rights tables or in the Program/Job Library tables. After the
installstion grows to include many users and many programs, it might be worthwhile
to add usage counts to these elements of the directory.

20 e 1,;‘%

SECTION VIi. PROGRAM PARAMETERS AND THE JOB LIBRARY

Paragraph §. 2 of this report describes parameter binding as an operational
feature of DM-1. Some of the concepts presented will be repeated here, in greater
detail.

7.1 PARAMETER CATEGORIES

A major reaponsibility of the DM-1 system i{s toc associate the input-output
parameters of programs with actual data items in the data pool. This ag=ociation is
called parameter binding. It is accomplished, in the DM-1 system, in three distinct
phases associatad with three conventiona of the system:

(1) How a program accesses and storzs data .n the data
pool.

(&) How the individual inputs and outputs of programs are
interrelated in a job.

() “low tue inputs and outputs of a job are tied to data-pool
. items in a job-run request.

These conventions present the input-output parameters in different aspects,
according to the context in which a parameter is viewed. The character of the input-
output parameters changes as they are ~ssociated with programming, job description,
or job execution.

Figure 7-1 is a branching structure which portrays the categories of input-
oufput parameters considered in DM-1. The geneﬂc term input-output (parameter)
applies to all categories and is shown in the figure as the highest node in the structure.
There are two types of input-output parameters. Generalized parameters are idealized
items that are associated with programs and jobs and for which no data exists.

Specific parameters are real items which correspond to logical positions in
the data pool! which can contain the data associated with the parameter.

The binding process ultimately re=:lts i:: the assignment of specific para-
meters to generalized parameters. The time axis in Figure 7-1 demonstrates this.
At program time, all parameters are generalized; at execution time, all parameters
are specific; in between, at job time, some parameters may be generalized and some
may be specific. The progression from generalized to specific may take place in
several stages:

(1) When a new program is sntered into the DM-1 library,

its input-output parameters are defined to the system as
generalized.

(2) o the program is used as a component in a fob, some of
its input-output parameters may be bound to specific items.
Others may remain generalized.

() When & job is called for execution, any remaining general-

fzed parameters must be made specific by the assignment
of a specific node in the data pool to each.

7.1.1 Generalized Parameters

There are two categories of generalized parameters, formal and individual.
Formal parameters are input-output items associsted with a program. Individual
parameters are input-output items associated with a job. When a program is used as
& compouent in & job, its form~l parameters are bound ‘o either specific parameters

-3
]
-

NP

INPUT-OUTPUT

Generalized Specific

Formal Individual External Internal

\ Permanent Transitory

Fixed Dynamic | Direct Indirect '

Inter-Job | Intra-Jnb

G,

| I

— Prc(nm—’!
l
|

Job:

Exscution

mﬂ — ~mmnfliiy

Figure 7-1. Categories of Input-Cutput Parameters

7-3

or individual parameters. That 18, the 2. as=ig: <~ -ither to actual data items in the
data pool or to job parameters which "vili br n e <-~~ifi when the job is executed.

Program parameters (formal) w.., “e uxeu °r dynamic. Fixed parameters
have a fixed structure defined by the prog ammer. The prigiain assumes that the
data bound to a fixed parameter is forratted acco: ding to rhe specified structure.
Dynamic parameters have no specified structure. 1ihe program is written to operate
wita the DM-1 directory information to determine the structure of dynamic input
parameters or to provide an item definition to the system for dynamic output parameters.

Job parameters (individual} may be direct or indirect. Mparameters are
intermediate items in the list of compenent programs that constitute the job. That is,
a direct parameter is an output of a program which is an input to other programs in
the job, but not an output of the job. When the job is executed, the system must make
all direct parameters specific by assigning a logical position in the data pool to them.
This specific node is assigned in the scratch area of the data pool. Indirect para-
meters are parameters which are inputs or outputs of the job itself. A job output is an
output of one of the component programs. Such an output may be an input to any of the
other component programs. A job input is an input of one of the component programs
and may also be an input to others. Indirect parameters are made specific by the
assignment of actual data-pool items or literals to input items and actual data-pool
items or working names for output items. These assignments are made by a user who
issues a job-run request at a console or by programs which issue a job-extension

request,

The types of generalized parameters, then, are formal parameters for pro-
gram inputs or outputs and individual parameters for job inputs, outputs, and inter-
mediates. Formal parameters are fixed when their structure is assigned by the pro-
grammer, or they are dynamic when the program determines the structure during
execution. Imdividual parameters are indirect if they are inputs or outputs of the job,
or they ars direct if they are inputs and outputs of job components, but nc. of the job.

7.1.2 Specific Parsmeters

Specific paramelers are acually logical nodes in the data-pool structure. The
categories of specific parameters are derived from the agency which assigns them and
the aature of the parameter.

7-4

g e same

s TR N I

BBy GO

¢

il

e e e e <ot

Specific parameters may be internal or external. An internal parameter is an
item in the data pool. An external parameter is a literal to be used as the value for a
generalized parameter when a job is executed. The literal may be bound to a generalized
input parameter of a component program when a job is described, or to 2 job input when
a job is executed. The system makes the external parameter specific by assigning a node
in the scratch area to it and by mapping the literal into the item corresponding to that
node.

Internal parameters may be permanent or transitory. A permanent para-
meter is an item in the common data base. A transitory parameter is an item in the
work area or scratch area. Permanent items exist in the data base independently of
any particular job or user. They may be assigned to generalized parameters when a
job is described or when a job is executed.

Transitory parameters are items dedicated to particular jobs or users. An
inter-job parameter is a transitory parameter which exists in the work area of the
data pool. A user may define work-<rea items as private files and use them as
specific input-output parameters to bind the generalized parameters of jobs. He may
also assign a job output to the work area by naming the item with a flag to request
that the system make the appropriate item definition. Either way, the inter-job para-
meter persists after the execution of the job which created it and may be bound to the
parameters of other jobs. An intra-job parameter is a transitory parameter which
exists in the scratch area of the data pnol. It exists only for the duration of the job
which uses it. Intra-job parameters are always assigned by the system. They are
used whenever a generalized parameter must be made specific, without the specifica-
tion of a data-pool item by g calling agent. All direct parameters are made into intra-
job parameters by the system when a job is executed. This action assigns a scratch-
area nods to accept the output of one component of a job 8o that it may be used as an
input to other components. '

Likewise, literals are transformed to intra-job parameters by the system.
They are written into a scratch item in preparing for a job execution so that they can
be read by the appropriate job components duiing exscution. Alsc, any job outputs
which the calling agent fails to bind are converted by the system to intra-job para-
meteTs 80 that they will be written into the scratch arva during the execution of the

7-8

© sy - AN F
NSNS ¥ N e S = ST

program which creates them, When the job is completed, all intra-job parameters
are automatically discarded.

7.1.48 Parameter-Binding Examples

Examples will be used to illustrate the various ways in which parameters may
be bound.

Consider a program called REGRESSION which fits a line to a set of points.
Each point is defined by an X-value and a Y-value. The input to REGRESSION is a file
called POINTS which contains a record for each point. The output is a statement
called LINE which contains two fields, M and B, defining a line. This is illustrated
in Figure 7-2.

POINTS, F LINE, S

X, 1, 18 REGRESSION M 1
Y, I, 18 B, I, 18

Figure 7-2. Example of Parameter Binding

During the design of REGRESSION, a programmer designed the generalized
input parameter POINTS and the generalized output parameter LINE to meet the require-
ments of the process. These are formal parameters because they are parameters of
a program, They are fixed because the structure of each is predefined by the program-
mer. Thus, the parameters POINTS and LINE are generalized, formal, fixed
parameters.

During the implementation of REGRESSION, the programmer assigns the
structures he has designed. He reads his input file by referring to the name POINTS
and writes his output staterment by referring to the name LINE. He knows that when
the program is actually running it will operate on some file of points which was
assigned to his formal parameter POINTS by a user. It is not significant to him that
the specific parameter has some other name. He is indifferent to the other character-
istics of the file: whether it is a data-base item, a work-area item or a scratch-area
item; whether it was produced by some previous job, by a program which preceded

7-6

S MY RS,

— 2

REGRESSION in the same job, or by a maintenance operation which converted it from
some external medium; whethevr the specific item has the X before the Y or the Y before
the X; etc. The programmer knows that the DM-1 system will arrange things so that
when he reads a record of the file which he has called PCINTS, his buffer will be

set to the next X~value (18-bit integer) followed by the next Y-value (18-bit integer),
regardless of the characteristics of the specific item being processed by the program.
If these results cannot be achieved, the system will not permit the program to operate.

After REGRESSION is compiled, the p'rogrammer, or some other user,
enters the program into the DM-1 library. This gives the system knowledge of the
formal parameters POINTS and LINE. Entry into the library automatically makes
the program into a one-task job. This converts the parameters into individual para-
meters; i.e., the.input POINTS and the output LINE of the job REGRESSION are -
individual parameters because they are job items. They are indirect parameters,
because they are job input-output parameters which may be bound to specific para-

meters when a request to execute the job is issued.

The indirect parameter (input) POINTS may be made specific by assigning
one of the following specific parameters to it:

(1) An external parameter. A literal vilue may be given for
the file as part of a job-run request. The system assigns
a node in the scratch area and maps the literal into the
item to prepare for the execution of REGRESSION. The
scratch-area item is then an intra-job parameter which
will be discarded after the job is executed.

(2) An internal, permanent parameter. The name of an
item in the data base may be used to make POINTS
specific. If the file is embedded in higher level files,
a condition may be used in the binding specification
to define the precise file to be used. If the format
of the selected item does not conform to the structure
of POINTS, a reformat clause may be used to direct
the system to select the appropriate fields for the X
and Y and to use them as 18-bit integers as directed
by the item definition for POINTS.

(3) An internal, transitory, inter-job parameter. This
binding specification is made exactly like the preceding
one. The only difference is that the item is selected
from the work area instead of the data base.

7-7

When the program operates on its formal input POINTS, it is completely
irdifferent to the mechanism that made it specific.

The indirect parameter (output) LINE may be made specific by assigning
one of the following specific parameters to it:

(1) An internal, permanent parameter. An output
item may be bound to a data base item under the
same rules as those for an input item. However, .
no output parameter may be bound to a permanent
item if it would cause changes in the values of an
indexed field. ‘i

(2) An internal, transitory, inter-job parameter. ‘This
kind of assignmen{ may be made in two ways. If
the work-area item to be used as the specific output
item already exists, the binding is the same as that
for a permanent parameter. I ihe item does not
exist, the user may assign a name and instruct the
system to create a work-area item to accept the
output. For example, the user might assign the
name MYLINE to the indirect parameter LINE.
After the job is finished, a work-area item called
MYLINE will exist with the values for the M and B
created by REGRESSION during the run. The item N
MYLINE may be displayed to the user or used as
an input to some other job. It will remain in the
work area until the user deletes it.

The job REGRESSION may be used as a component in some other job.
Suppose that a job called FAILURE ANALYSIS is constructed from the jobs SELECT,
REGRESSION and PLOT. The situation is depicted in Figure 7-3.

CRITERIA -———‘l SELECT psromnmgm RESU LT

F
POINTS '——'—-C{ REGRESSION p———e LI?E

EQUATION —‘{ PLOT e et V ECTORS

Figure 7-3. Job Construction Procedure

7-8 |

N W e s e v oA S e, 8 e,

S NS

o 1 PR W

G

reiige

o A RN

L

The job FAILURE ANALYSIS includes the job REGRESSION as a component.
If the parameters of REGRESSIUN nré neither inputs nor outputs of the new job, they
become direct parameters in th{ s context. That is, they are intermediate items in the
job FAILURE ANALYSIS, which might be viewed as a job with one input and one output
as shown in Figure 7-4.

CHOICES FAILURE | _ FAILURE LINE
(CRITERIA) ANALYSIS (VECTORS)

Figure 7-4. Intermediate Form of the Job FAILURE ANALYSIS

The job has the indirect input parameter called CHOICES which is bound to
the indirect parameter CRITERIA of the component SELECT. It has the indirect output
parameter FAILURE LINE which is bound to the indirect output parameter VECTORS
of the component PLOT. It also has two direct parameters: one results from binding
the parameter RESULT of SELECT to the parameter POINTS of REGRESSION, and
the other results from binding the parameter LINE of REGRESSION to the parameter
EQUATION of PLOT. Whenever FAILURE ANALYSIS is executed, the system will

assign an intra-job parameter in the scratch area to these direct parameters of the job.

The indirect parameters will be bound to specific items by «ne same mechanisms as
were used for the job REGRESSION.

7.2 PROGRAM ENTRY

A program comes under the control of the DM-1 system when it is entered
into the library through the Program Entry job. Programs are compllad independently
of the syastem and their object code is stored under the control of the operating system.
They ure entered into the DM-1 system through a program specification which includes
the following elements:

{1) Program Name

(® Program Input: :i:-.anel)

(% Program Outputs (formal)

() Program Executive Control Description

il

e sl et , R AN, TR RN e

The formal input-output parameters are described by naming them and
giving an item definition for the fixed parameters. Once the Program Entry job has
processed the program specification, the program becomes a job in the DM-1 library.
It may be called for execution by a job-run request issued by a user at a console or by
a job-extension request issued by a running program. It may also be used as a com-
ponent in a job description.

7.3 JOB DESCRIPTION

A job description defines a new joo as a sequence of existing jobs. The com-
ponents in the sequence are jobs from the DM-1 library. They are in the library
because they were defined by a previous job description which was processed by the
Job Description job or they were entered by a program specification which was pro-
cessed by the Program Entry job.

To describe a job, the user names the job and its input-output parameters,
identifies each component job, and binds the indirect input-output parameters of each
component job. The job description includes the following elements:

(1) Job Name
{(2) Job Inputs (indirect)

(3) Job Outputs (indirect)
(4 Job Components List

1he job name is the name through which the new job will be called for execution. The
job inputs and outy uts are a series of parameter names for the bindable, indirect,
input-output parameters for the new job. The job components lisi cortuin3 the name
and binding specification for each job.

The joh inputs and outputs are user-assigned names for component inputs
and outputs which are not to be madc specific by the job description. They are
dummy names which are used in the components list to show the relationship between
the inputs and outputs of the new job and the inputs and outputs cf the component jobs. . i
If the job description makes all component inpuis and outpuis specific, there are no

job inputs or outputs.

7-10

A s C st am atwerdess o oea el e e
F e e L ap

B i

The components list contains an entry for each component job in the sequence
in which they are {o be executed in the new job. It gives the name of the component and
binds each of the component's indirect input-output parameters.

7.3.1 Component Input Parameter Binding

Each component input parameter is bound by the assignment of one of the
following:

(1) An external parameter. This is a literal value to
be used as the value for the component input parameter.

(3 A permanent parameier. This is the name of an item
in the data base. The binding specification may include a
conditionclause and a reformat clause todirectth- ~ em
to select a subset of the named item and to interpret the
selected subset in a format which differs from its
format in the data base. The resulting item is to be
used as the input to the component each time the new
jot is run.,

(3) An inter-job parameter. This is the name of an item
in the work area. The binding specification is the
same as that for a permanent parameter.

(4 An indirect parameter. The component input para-
meter is itself an indirect parameter which must be
buund whenever the component is called as a job or
used in a job decription. The first three parameter
types which may be bound tc the component input
parameter make it specific; i.e., they specify an
item in the data pool as the source of the input data.
(A literal is an item in the data pool when the job is
executed.) However, the new job might be more
flexible if the binding for some of the component in-
puts can be deferred until the job is executed. This
is accomplished by binding the component input para-
meter to an indirect input parameter of the new job.
The indirect parameter is assigned a name in the
list of job inputs and this name is used to bind the
inputs of some of the components. When the new
jobs is executed, its indirect input parameter is
made specific by the user. The associsted com-
ponent inputa are made specific at the same time.

7-11

BEERREPRES S & s b

(5) A direct parameter., This is a name used to
identify an output of a previcus compnent in the
component list. It is not specific becaise there
is no node in the data pool correspondiny to ii.
When the new job is e: :cuted, the system w'll
assign a node in the scratch area (an intra-jch
parameter) to accept the output of the earlier
component so that it may be used as the input ic
later components. The output of the eariier
component may also be an output of the job. In
this case, the name of the job output is used, and ;
the system uses the node ' “und to the job output
as the source of the input data for components i
whose inputs were bound this way. A condition
clause #£nd areforn... :lause maybeused to specify
a subeet of the source item and a change in its
structure,

7.3.2 Component Output Parameter Binding
Each componzent output parameter is bound by the assignment of one of the

followirg:

(1) A permanent psrameter This is the name of an
{temn iu the cata base and a condition, if ne~essary.
It defines the unique nocs in the data base which
is to receive the output item from the compcnent,

(2 An inter-job parameter. This is the name of an
item in the work area and a condition, !f necessary.
It defines a unique node in the work area which i. to
receive the output from the component,

(3) An indirect parameter. When the binding specification
for a component output parameter is to Le deferred
until the new job is executed, the component output
parameter is vound to an output o’ the ew job. The
user assigns a name {n the !o. output list and uses
this name to bind the component outnut,

(40 Adirec! perameter. This {s a name us~ to specify
that the component cutput is to be _sed as an .nput
to components which occur later in the components
1iat.

V12

7.3.3 Parameter-ninding Cholces

The choices for binding the indirect input-output parameters may be
surrmarized as follows:

(1) Specific data-base and work-area items may be
bound to some of the input and output parameters of
the components.

{(2) Some of the component inputs are ccrmected to out-
puts of previous components by assigning a name to
the output and using that name for the inputs.

{3) With either (1) or (2), a condition clause and a re-
format clause may be used to specify a subset of the
source item and a change in its structure when the
source item is used as an input. A condition may be
used with (1) to define a unique node if the named item
is embedded ina file.

(44 The specific binding of component input and output
parameters may Lo deferred until the new job is
executed by assigning a name in the job input or
job output list and asscuiating the component input
or output with thai name.

7.4 THE JOB DESCRIPTION LIBRARY

The Job Desoription job processes the job description to produce a new
entry in the job description library. Such entries are also produced by the Program
Entry job when a new program {s defined to the system. The new program is
treated as a one-component job and is known a8 a terminal job, These are the
fundamental building blocks of all jobs.

Four major elemerts of information are maintained {n the job descrintion
library for every job. Two additional elements are maintainad for terminal ‘ubs.
These are:

For terminal jcbs only:
(1) Input-Output Item Description
(2 Executive Contral Description
For all jobs:
(1) Job Item List
(2 Stutic Task List

(3) Component List

(4 Usage Liat

The input-output item description contains an item definition for each of the
formal parameters of a program. The structural information, which is identical to
the information in the Item List and Term List in the system directories, is maintained.
For fixed parameters, the item description is the definition specified to the Program
Entry job. For dynamic parameters, the item desacription is a null node to he defined
by the systc~: if it is a dynamic input parameter or by the program, during its axecu-
tion, if it is a dynamic output parameter.

The executive control description contains the identifier for the program's
object code within the operating system. It is used by the DM-1 system to request
that the program be loaded.

The job item lirt contains an entry for each item used in the course of a
job's execution. Therc is one entry for each of the job's indirect input-output parameters,
one for each data pool item used as specific input-output parameters for a component,
one for each literal used as input to a component, and one for each item needed to
offect the binding of a componert output to the inputs of other components. Each itein
occurs only once in the job item list, even when it is used as an input to several com-
ponents. Tne input-output items are classified in the job item list in one of the
following cotegories: !

(1) Job Input-Output (indirect)

(2) Intermediate Input-Output (direct)

(3) Internal lnput-Output {internal)

{4) Literal Input (external)
The job input-output category defines the parameter as an indirect parameter which
must h» bound in any request for execution of the job. Parameters in this category are
the only *r:iciu or outputs of the job; the other cutegories specify items which are

internal to the job. The intermediate iuput-output category defines a requirement
for £ scratch {tem so that one component can write an output item which will be read

7-14

by others. The internal input-output category is for data-pool items which were
bound to inputs or outputs of components. The literal input category refers to literal
values which were bound to component inputs in the job description.

A static ‘ask list is another element of the job description library. It is
present for all jobs. The static task list contains one entry for each task (terminal
job or program) ' aich must be executed when the job is requested. The entries.
correspond to the fundamental programs which make up the job. I a multicomponent
Job is used as a component of a higher level job, the system reduces the set of com-
ponents to the fundamental programs, or tasks, by copying the static task list of the
component job into the static task list of the new job. Each entry in the static task
list contains the executive control description of the program and a list of the formal
parameter names used by the program. Each formal parameter name is equated to an
item in the job item list.

The component list is an internal representation of the component list that
was used in the job description. It permits the system to reconstruct the job
description for display purposes. Eacl eutry in the component list contains the com-
ponent name and the binding specification that was used for thu comr~nent in the job
description. Each input and output is coded to specify its category in the job item
list,

The usage list contains the names of all jobs whick use the job described
by this library entry as a component. This list is displayed when a job description
is displayed, 8o that the user can determine the jobs which would be affected by a
change in a given job.

7.5 JOB AND PROGRAM DELETION

Jobs and, therefore, programs may be deleted from the job description

library by the Job Deletion job. The deletion may be accomparied by a display of
the job description so that the user may scan the usage list to determine which

. higher level jobs are affected by the deletion. The display may not be required
because the deletion is frequently made to accommodate the entry of an updated version
of the job. If an updated version inveolves no changes in the job's indirect input-output
parai.tters, the change can have no sffect on higher level jobs which use the changed
job as & component.

7-18

7.6 LIBRARY DISPLAY

The fpb description of any job in the library may be displayed through use
of the Display Jdb Description job. The entire description or a part of it may be
displayed. This gives the user the means of uncovering the descriptive information
he might need to e te the job or to use it as a component in another job.

7-16

PN T

e Ao iy,

P - R T U e e . P

SECTION Vill. PROGRAMMING SYSTEM SERVICES

The DM-1 service routines offer the user progrhmmer a comprehensive set
of services for storing and accessing data. The service routines exist to permit the
user to mcnipulate the data nool randomly and conventently without paying any attention
to the mechanics ol packing, segmenting, indexing, etc. The program receives its
data in the forn: of traditicnal, word-criented flelds. Tho mechanics and control are
supplied by the service routine. The programmer need only be aware of the logical
structure of the data which hi= program processes,

Figure 8-1 shows the DM-1 Servicu Package as the interface between the
data pool on mass storage and the prugram's buffer within the program. By calls for
service routines, the programmer directa the Service Package to transmit data from
the data pool to his buffer, or from his buffer to the data pool, The parameters and
storage space required in interpreting the data segments in terms of the structure de-
fiaitions are controlied by the gervice routines.

MASS STORAGE DM-1 SERVICES USER PROGRAM
DATA +————3»DATA
——DATA —— SEGMENT DATA BUFFER
pPOOL ———— POINTERS BUFFER
—ITEM ITEM - DESCRIPTION
LISTS - —— \ @—— LIST CONTROL LIST
TABLE POINTERS

Figure 8-1. Interfaces of the DM-1 Services

8.1 DATA ACCESS SERVICES

The user may employ a variety of techniques for integrating service calls
into his flow of processing. However, all of the techniques essentially consist of an
Open operation, followed by a mixture of Seek's and Read's and terminated by a Close.

8.1.1 Open- For-Input

The programmer employs the Open- For-Input service to identify ap area of
the data pool from which he intends to read some data. The Open operation srepares
the DM-1 system controls so that the system is able to respond to subsequc.at input
requests for any item subsumed within the opened item .

In the Opon request, the user supplies a symbolic name for the item to be
opened. This symbolic nanie can be either the actual term name of a data-pool item or
a formal namo that was bound to a term name by the Requeat Processor (see Section V).
The Open service retrieves the structure definitions (item List) for the named item and
. 5 “ubsumed items. Open sets a control pointer, "j", at the first subaumed item.

In the example shown in Table 8-1, Purchasing Orders, FILE, "i" wou'd be set to 2,
the Order Record.

Open also ret-ieves the segment containing the first data that is pertinent to
the opened item. Then it steps over any irrelevant data, leaving tho data pointers at
tho first data bit of the opened item. This physical retrieval of segments has no impact

8-3

T e

{ TABLE 8-1, STRUCTURE DEFINITION FOR PURCHASING ORDERS FILE
13
iy WO ITEM NAME, TYPE, SIZE
1 Purchasing Orders, FILE
i 2 (Order, RECORD, 7)
| 3 ‘ PO Number, alphanumeric, 6
4 Due Date, decimsl, 6
5 Requestor, alphanumeric, V
6 Vendor Number, decimal, 5
7 Vendor Label, statement, 4
8 Name, alphanumeric, V
9 Street, alphanumeric, V
10 City, alphanumeric, V
’i 11 State, alphanumeric, V
12 Value, inte ~r, V
. 13 Purchasing "toma, FILE
14 (Item, RECORD, 3)
15 , Item Sequence Code, integer, 8
18 Quantity, integer, 8
17 Cost, integer, V
8-3

S L . . R e S S,

S PR T DA RN SN 0 A R SR I R

on the logic of the user program. The program is affected only when data is moved
into the user buffer area. The completion of the Open operation allows the pro-
grammer to issue other input requests, namely, Read's and Seek's.

8.1.2 Read

The programmer employs the Read service to move selected data items
into his buffer., This serice opcrates under the control of a list, the Buffer Descrip-
tion List (BDL), which is supplied by the user with the Read call. The programmer
uses this list to specify which items should be moved to the buffer (TRANSMITTED)
and which items should be passed over (SKIPPED). The BDL describes the buffer
fields, assigned by the programmer to accept the fields transmitted in the Read, by
specifying the size of each buffer field.

The programmer considers first the data item at which the system pointers
are currently se!. The action code (Transmit or Skip) for this item is contained in
the first entry of the list. The second entry defines the action for the second item, and
so on. If the user calls for a- item to Le skipped, all items subsumed by this item
are igrored. Consider the statement Vendor Label, which is Item No, 7 in Figure
8-2. If a BDL called for skipping this s:atement, the four subsumed items would be
passed over. The next action code in the BDL would affect Item No. 12, Value.

However, if a programmer calls for an item to be transmitted, the entire
item is not automatically transmitted. The programmer can select just those sub-
items which he wants, He does this by including an entry in the BDL for each subitem.
Thus, if & programmer cailed for transmitting Vendor Label, this could be followed by :
"Transmit, Skip, Skip, Transmit." This would cause the DM-1 Services to move 3

Name iato the buffer, followed by State, Since the programmer does not explicitl, ;
name the fields in the Iist, it is :mportant for him to be mindfui of the position of the
system polnters,

Each eniry in thc BDL cuntains space for buffer field size and status indi- r
cators, ‘o addition ‘o the Skip/ Trunsmit action code. The user supplies the size of
the buffer field for every field which is to be transmitted. This enablcs the DM-1
systein to justify each piece of data in a buffer field of convenient size for the user's !

processing. In whe status .ndicators, the system supplies information such as:

end of file, optional item missing, and item-size error. Figure 8-2 shows the Buffer
Description List for a program that needs the fields Name and Stawe from the Vendor
Label statement. The list assumes that the input pointer is at Item No. 7, Vendor

Label.
ITEM BDL NOTES
ACTION| SIZE INDICATOR
7. VENDOR LABEL, S T - T = Transmit
4 8. NAME, A T 24 8 = Reip

8. STREET, A S - Size gives number of

10. CITY, A s | - | units; the unit is -
11, STATE, A T 16 identified in item type

of Item List

Figure 8-2. Sample Buffer Description List

When the Read operation is completed, the system pointers remain set at the
item which follows the 1ast item treated {n the Buffer Description List.

8.1.3 Seek

, The programmer employs the Seek service to access data in a completely
random manner within the opened item. In a Seek call, the programmer identifies a
desired data item; the DM-1 service zets the data pointers and the control pointers to
that item. The item can be identified by relative item rumber (see Table 8-1), or by
relative item number and record number. In the latter case, the programmer may
replace the record number with an end-of-file indicator or with a key value for an
ordered filo,

Depending on the {tem desired, Seek can move the pointers forward or
backward. [f the item is not in the currently available segment, the service routine
retrieves the segment containing the {irst date of the desired {tem. BSeek, iike Open,
does not move any data int) the user bhuffer. ‘

8.1.4 Close-For-'nput

The programmer employs a Close-For-input call to indicate that he hss
no further necd for the opened item. The Close aperation roleases the storage areas
which the syastem was using for this item.

i

8-5

. . R SR

8.1.5 Retrieve-Item

Retrieve-Item i8 both the most comprehensive DM-1 access service and
the simplest to use. It provides the programmer with a single call which will fetch
data from any area of the data poo! and deliver it to the user's buffer. Retrieve ef-
fectively combines the operations of Open, Read, and Close.

For a Retrieve-Item call, the programmer supplies the symbolic name of
the desired item together with a Buffer Description List which controls the editing of
the item. The symbolic name can be either the actual term name of a data pool item
or a formal name that was bound to a term name by the Request Processor (see
Section V). The Buffer Description Lisi is the same as that described for the Read
service in this section,

Retrieve is convenient to use inasmuch as it permits the user to get an
input item with a single call. Moreover, since Rctrieve i8 a completely random
operation, ‘he programmer is relieved of responsibility for mowing the initial
position of the system pointers. However, the programmer cannst rély on Retrieve
for all data accesses. Since this service delivers the data to the user's buffer, the
user cannot call for an item that is larger than his buffer. Even for small items the
programmer may choose to use Open with Read's and Seek's. To cite an extreme
case, the programmer would not want to Retrieve-Vendor Label (Table 8-1) and then
Retrieve-Vaiue, This pair of calla would cause the DM-1 systemn to repeat unneces-
sarily several operations, such as retrieving the Item List and building the Item
List Table. The use of Open permits any number of accesses of the subsumed items,
while the major contral operations arc performed only once. FEach user can apply
these considerations to his own program and select the method of accessing whih
offers u..n the greater advantage.

8.2 WRITING SERVICES

The DM-1 data storage services are divided into two categories: the
writing services, which are treated in t™'s varagraph, and the updating ser vices,
which are covered in Paragraph 8.3, Writing is strictly an output operation, while
updating I8 a combination of input and output operaticns, ’

8-6

~

Writing admits of fewer variations than reading, To begin with, writing
proceeds always in a forward direction. In addition, writing does not permit skipping
to an item, as in a Seel operation where many items of different levels may be logically
passed over. In writing, only the current item may be skipped. Although this could
involve the skipping of many subsumed items, it is still a rather straightforward

operation,

8.2.1 Open-For-Writing

The programmer employs the Open-For-Wri.ing service to identify an area
of the data pool into which he intends to put soine data. The structure of the data
item being opened must have been uefined eariier, either by means of the Define-I*2m
job or by means of the Fix-Item service, The Open-For-Writing service includes all
of the operations performed in Open-For-Input: translating the symbolic itern name
to a system identifier (IPC), retrieving the structure definitions (Item List), and
retrieving the data segment in which the opened item logically belongs (based on itc
IPC). In addition, Open-For-Writing sets up a new output segment and copies from
the retrieved data segment any data which has an identifier iower than the [PC of
the opened item. At this point the svstem is ready to receive new data from the user
program via Write calls.

4,2,2 Wr ite

The programmer employs the Write service to put new data into th ' data
pool. A Buffer Dwscripotion Li-* must accompany the Write reqest. In each entry
of this list, the programmer sets an action code to indicate whether the item is pre- !
sent in the buffer [Transmit) or missing (Skip). For each field which is present the

l{st must also contain the item size. The first entrv of the BDL pertains to the first
item subsumed by the opened item. If this itew is declared to be missing, all of its
subitems are assumed to be missing. If the item ie deciared to be present, the nexi
BDL entry pertains to its first subitem. This i8 completely parallel o the stepping of
the pointers in the Read operation, described in Paragraph 8, 1.2.

When an item is misaing, this may be vepresented in the date pool in n
varicty of ways, such as: a file with § records, a varicble length field of size ¢,
a fixed length field with {ts null bit set, or as an optionai item which is8 ubsent, The

p—, B "

6-7

/.
,’;
particular re~resentation ls\’éhoaen automatically by the Write service depending on the
type of tho item (defined in the Item List). The user need only set the action code for
the item to Skip.

;
Whon a Write request is satistied, the system pointers remain set at the
item which follows the last item trcated in the Buffer Description List,

8.2.3 Ciose~For-Writing

The programm-r employs a Close-For-Writing call to indicate that he
had finished writing the opened item., The Close request causes the ’M-1 system
to retrieve the data segment containing the item which logically follows the clesed
item. This item and the rest of its segment are copiedinto the output stream
following the closed item,

After this 18 accomplished, the system directorics are updated with the
segment names of all *he segments which were recorded from the Open procedure
down to anc< including the Close procedure. Then the storage areas whic! the
systein was using {c: this item are released.

8.2.4 Insert-Data.

The Insert-Data service parallels the input service Retrieve-Item,
The programmer employs Insert-Data to accomplish an Open, a Write, and a
Close all in one request. The user supplies a symbolic item name and a Buffer
Description List with the call. All of the data which is to be written must be in the
user's buffer when the request is issued. The system writes the data into the data
pool and copies as much of the logically adjacent data as is required to maintain
the integrity of the data stream. The service routine then updates the system dirce-
tories and the operation is complete,

8.3 UPDATING SERVICES

The DM~1 updating routines provide the prbgrammer with a convenient set
of services for modifying an item which is in the data pool. The . lating services
comkb.ac input and output operations., While updating is in progress, two items are
gald to he active: the item fron. the data pool (input item) and the new version being

creqted (output ftem). While updating, the user can issuc a wide range of requests.

B-8

Some requests affect only the input item (Read and Seek), Insert affects oniy the
output item, and the remalning calls affect both items (Replace, Delete, and Seek-
With-Copy).

As in the writing procedure, the user must pi ogress through th output
item In a forward direction, However, in updating, he does not have to prepare all
the output data; he can direct the sysiem to copy data from the {nput item, The user
is free to move the input item in any direction, But, before he caller on the system to
perform a copy operatiar, the user muet have his inpu. item in the logically correr:t
position. Copying requires that the structure of the input match the structure o1 the
output. This does not imply that the record number of th= input item must match
that of the output item; only the structures must coincide,

5.3.1 Open-For-Updating

The programmer employg the Open-For-Updating sevvice to tdentify a
sccticn of the data pool which he intends to modify. The Open operstion prepares the
DM-1 system controis so that the system is able to respond to subsequent update
request for any item subsumed within the opened iiem,

The ‘Wen- For-Updating operatisn begins In the same manner as Open- For-
Writing. An Item List 1able containing the structure definitions of the opened item is
built, The daia segment which should rontzin the first data of the opened ftem is
retrieved. An output segment is initialized and any data in the input segment having
an [PC less than the tdeitifize of the upened {tem is copled to the output segment.
Cortaln system pointers are then duplicated to permit the input item to be moved
independently from the output item,

8.3.2 Read, Seek

Read and Scek are {dentical to the services described under Inpat in Para-
gravh 8,1,

8,3.3 Insert

- ——

Insert consists of a write operation; it affects only the output item. Con-
soquently, it is legically limited to writing a new “ecord., Any other yype of data
ftem would have at least some mark in the input item, andg, therefore, & repluce

ARSI TR

ovperation would be used The Insert call mugt be accompaniced by a Buffer Bescription

List, The user interface is exactly as that described tor Write in Paragraph %, 2,

R.3.4 Replace

The programmer employs the Replace service to substitute deta in his
buffer for the next item of input, Replace moves the data from tha buffer to the ¢t-
put item under coniroi of a BDL as in a write operation, Then the system skips the
input pointers over the current input item, The user should account for this entire

item in his BDL by means of either T;ansmit's or Skin's,

8.3.5 Delete

The programmer employs Delete {0 eliminate the data corresponding to the
current item, No BDL is needed with this call. The system simpiy marks the entire
item as misgsing in the output; the particular mark used depends on the item type, us
explained in Paragraph 8,2,2, On the input side, the rystem pointers are moved past

the current item,

8.3.6 Seek-With-Copy

The programmer employs the Seek-With-Copy service te copy a portion of
the input item into the output, No BDL need accompany this call, since the data is
completely defined in the input item, The uger simply identifies the input item which
{s to terminate the copy operation. As with Seek, he may Identify the item by a
relative item number, or by a relative item number and a record number. In the
latter case, the record number c¢an he replaced by an end-of-file indicator or hy a

key value for an ordered filc,

'The Seek-With-Copy service begins by copying the current input {tem and
continues down to, but excludes the item identified in the request.

8.3.7 Close-For-Update

In many respects this operavion parallels Close- For-Writing, The unique
aspect of this service is that it copies any data remalning in the input item. If the
input pointers are already set at the item fullowing the opened {tem, this step is
skipped. Next, any data following the opened {tem in the input segment is copied into
the output stream. The system directories arc updated to include the new segments
written during the upd:te procedure. Then the storage arcvas which the system was
us! /g are released,

8-10

eh

e,

1t A 4 4 T

£.3.8 Replace-Item

The programmer emple - the Replace-Item service to substitute g new
data item for on existing data item . a completely random manner. This single call
causes the DM-1 system to edit data from the user's buffer and put it into the data
pool. The system directories are updated so that the new data loglcally trkes the
place of the named item, In addition to the data, the user supplies a symbolic item
name (as in the Open calls) and a Buffer Description List.

8.3.9 Delete~Item

This 18 a completely randoin service, simiiar iv neplace-Itemn, but here
the named item is reolaced with a mark indicating that the item fc missing. It follows
that no Buffer Description List is required,

8-11

T RTINS, A N S e S

———

Secunty Classification

DOCUMENT CONTROL DATA - R&D

(Security claseitication of title, body of abatract and indexing annotation muet be snisred when the overall impuct iz clasailied)

t QRIGINAYING ACTIVMITY {Corporate au.'ior) 28 RLEPORT SETUV'TY C LASSIFICATION
Auerbach Corporation Unclasgified

Philadelphia 3, Pennsylvania 19107 2t GRouP

3 REPORTY TITLE

Reliability Centrel Automatic Data Processing Subsystem

4 DESCRIPTIVE NOTES (Type of report and incluaive dstes)
Final Report

- —_— e —— [PE—
5 AUTHORI(S) (l.ast name. lirst name. initial)

Dr. J. Sable, W. Crowley, M. Rosenthal, S. Forst, P. Harper

§ REPORT DATE Vrn TOTAL NO. OF PAGES ITb NO OF REFS
| August 1966 780 !
8e CONTHACT OR GRANT NO 94 ORIGINATOR'S REPORT NUMBER(S)
AF 39(602)~3820
b PROJECT NO 5519 1280-TR
c 9b. OTHER R’POIT Ns(_s) (Any other numbete that mey be assignel
this report,
¢ RADC-TR-66-LTL (3 Vols)

10 AVAILABILITY/LIMITATION NOTICES

This document is subject to special expor:i controls and each transmittal to
foreign governments or foreign nationals mey be made only wiih prior approval oOf
DACC (EmMur), GAFB, NY 134h0.

t1 SUPPLEMENTARY NOTES 1 12 2rONSORING MILITARY ACTIVITY

|

Rome Air Development Center (EMIID)

| Griffiss Air Force Base, New York 13440
,,,,, |
13 ABSTRACT

This is & three-volume final report produced for the Rome Alr Development
Center (RADC) under Contract AF 30(602)-3820. Volumes I and II are the Design
Specificatica Report for the Automatic Data Processing Subsystem (ADPS) of
Reliability Central, known as Data Maunager-l (DM-1). Volume III is & survey
of major, computer-oriented ou-line information aiil fact retrievel systems.

The system design apecification will be used for the .mplementaticu of the
computer prosrams required to operate thc RADC Reliability Central. The work
reportea in these volues is an extension and detailing of the functional
rvstem design developed by Auerbach Corp. under Contract AF 30(602)-3h33 and
reported in RADC-TR-65-189, Design of Reliability Central Data Management
Subsystem, July 1965. The DM-1 design provides for the incorporation of the
reliability data collected by the Illinois Institute cf Lechnology Research

Institute (IITRI) under Contract AF 30(602)-3621 with Auerbach Corp. as
subcontractor,

DD "™ 1473

UNCLASSIFIED
Security Classification

}
¥
:

URCLASSIFIED

Security Classilication
Tha, : LINK A LINK B LINK C
K KEY WORDS nowr wWT ROLE wT ROLE wT

Fille Structures

Programming Languages
Data Processing

Storage and Retrieval ..

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and addrens
of the contractor, subcontractor, grantee, Department of De-
fanse activity or other organization (corporats author) lasuing
the report,

2s. REPORT SECURITY CLASSIFICATION: Enter the over-
all securlty classification of the report. Indicate whether
‘‘Restricted Data' is included. Marking is to be in accord.
ance with appropriate security regulations.

25. GRQUP: Automstic downgruding is specified in DoD Di-
rective 5200, 10 and Armed Fo-ces Industrial Manual, Enter
the group number. Also, when applicable, show that opticnal
markings have been used for Group 3 and Group 4 ‘as author-
ized

3. REPORT TITLE: Enter the complete report title in ail
capital letters. Titles in all cases should be unclassified,
If a meaadingful title cannot be selected without classifica-
tion, shou title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, o final,
Give the inclusive dates when a specific reporting period is
covered,

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
0. in the report. Enter last name, {irst name, middle initial.
If military, show rank and branch of service. The name of
the principal aitthor is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year, or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal paegination procedures, i.e., enter the
number of pages containiny information,

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written,

8b, 8¢, & 8d. PROJECT N'MSER: Enter the appropriate
military department identification, such as project number,
aubproject number, system numbers, tagk number, etc,

9a. ORIGINATOR'S REPORT NUMBER(S): Eater the offi-
clal report number by which the document will be identifind
and controlled by the originating activity, This number must
be unique to this report,

9L OTHER REPORT NUMBER(S): If the renort has been
asulpned any other report numbers (cither by the originator

ar by the sponsor), alno enter this number(s).

10, AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itution on further dissemination of the report, other than those

- -

imposed by security classilication, using standard stutements
such as!

‘*Qualified requesters may obtain copi 's of this

(1
report from DDC."’

(2) “'Foreign announcemcnt and uissemination of this
report by DDC is not authorized."’

(3) '*U. S. Government agencies may obtain coy.lus of
this report directly from DDC., Other qualified DDC
users sha') request through

"

(4) U, € military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

tal
(5) ‘*'All distribution of this report is controlled. Qual-

ified DDC users shall request through

il

If the report has been furnishied to the Office of Technical
Services, Department of Commerce, for sule to the public, indi-
cate this fact . id enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-

tory notes.

12, SPONSU: 1NG MILITARY ACTIVITY: Enter the name of

the departmental praject office or laboratory sponsoring (pay~

ing for) the research and development. Include address,

13. ABSTRACT: Enter an abstract giving a brief and factuul
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the tachnical re-
port. If additional space is required, a continuation sheet shall
he attached.

It is highly Jesirable that the abstract of classified reports

be unclassified. Each paragraph of the abstract shall end with
an indication of the military security claasification of the in-
formation in the paragraph, represented as (TS), (5), (C), or (U).

Thete is no limitation on the length of the abstract. How-

ever, the suggested length is from 150 to 225 words.

14. KEY WOFDS: Key words are technically meaningfu! terms
or short phreses that charactetize a report and may be used ns
index entries for cataloging the report.
sclocted so that no security classification is required. ldenti-
fiers, such as equipment model desipnation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-.
text. The assignment of tinks, rules, and weiphts Is optional.

Key words must he

UNCLASSIFIED

Security Classification

